Переводчик чисел из десятичной системы в двоичную. Перевод чисел из одной системы счисления в другую. Перевод небольших целых чисел из десятичной системы счисления в двоичную в уме

Замечание 1

Если вы хотите перевести число из одной системы счисления в другую, то удобнее для начала перевести его в десятичную систему счисления, и уже только потом из десятичной перевести в любую другую систему счисления.

Правила перевода чисел из любой системы счисления в десятичную

В вычислительной технике, использующей машинную арифметику, большую роль играет преобразование чисел из одной системы счисления в другую. Ниже приведем основные правила таких преобразований (переводов).

    При переводе двоичного числа в десятичное требуется представить двоичное число в виде многочлена , каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $2$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_2=A_n \cdot 2^{n-1} + A_{n-1} \cdot 2^{n-2} + A_{n-2} \cdot 2^{n-3} + ... + A_2 \cdot 2^1 + A_1 \cdot 2^0$

Рисунок 1. Таблица 1

Пример 1

Число $11110101_2$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $1$ степеней основания $2$, представим число в виде многочлена:

$11110101_2 = 1 \cdot 27 + 1 \cdot 26 + 1 \cdot 25 + 1 \cdot 24 + 0 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 128 + 64 + 32 + 16 + 0 + 4 + 0 + 1 = 245_{10}$

    Для перевода числа из восьмеричной системы счисления в десятичную требуется представить его в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $8$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_8 = A_n \cdot 8^{n-1} + A_{n-1} \cdot 8^{n-2} + A_{n-2} \cdot 8^{n-3} + ... + A_2 \cdot 8^1 + A_1 \cdot 8^0$

Рисунок 2. Таблица 2

Пример 2

Число $75013_8$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $2$ степеней основания $8$, представим число в виде многочлена:

$75013_8 = 7\cdot 8^4 + 5 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 3 \cdot 8^0 = 31243_{10}$

    Для перевода числа из шестнадцатеричной системы счисления в десятичную необходимо его представить в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $16$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_{16} = A_n \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + ... + A_2 \cdot 16^1 + A_1 \cdot 16^0$

Рисунок 3. Таблица 3

Пример 3

Число $FFA2_{16}$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $3$ степеней основания $8$, представим число в виде многочлена:

$FFA2_{16} = 15 \cdot 16^3 + 15 \cdot 16^2 + 10 \cdot 16^1 + 2 \cdot 16^0 =61440 + 3840 + 160 + 2 = 65442_{10}$

Правила перевода чисел из десятичной системы счисления в другую

  • Для перевода числа из десятичной системы счисления в двоичную его необходимо последовательно делить на $2$ до тех пор, пока не останется остаток, меньший или равный $1$. Число в двоичной системе представить как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример 4

Число $22_{10}$ перевести в двоичную систему счисления.

Решение:

Рисунок 4.

$22_{10} = 10110_2$

  • Для перевода числа из десятичной системы счисления в восьмеричную его необходимо последовательно делить на $8$ до тех пор, пока не останется остаток, меньший или равный $7$. Число в восьмеричной системе счисления представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 5

Число $571_{10}$ перевести в восьмеричную систему счисления.

Решение:

Рисунок 5.

$571_{10} = 1073_8$

  • Для перевода числа из десятичной системы счисления в шестнадцатеричную систему его необходимо последовательно делить на $16$ до тех пор, пока не останется остаток, меньший или равный $15$. Число в шестнадцатеричной системе представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 6

Число $7467_{10}$ перевести в шестнадцатеричную систему счисления.

Решение:

Рисунок 6.

$7467_{10} = 1D2B_{16}$

    Для того чтобы перевести правильную дробь из десятичной системы счисления в недесятичную, необходимо дробную часть преобразуемого числа последовательно умножить на основание той системы, в которую ее требуется перевести. Дробь в новой системе будет представлена в виде целых частей произведений, начиная с первого.

    Например: $0,3125_{(10)}$ в восьмеричной системе счисления будет выглядеть как $0,24_{(8)}$.

    В данном случае можно столкнуться с проблемой, когда конечной десятичной дроби может соответствовать бесконечная (периодическая) дробь в недесятичной системе счисления. В данном случае количество знаков в дроби, представленной в новой системе, будет зависеть от требуемой точности. Также нужно отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

Правила перевода чисел из двоичной системы счисления в другую

  • Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Рисунок 7. Таблица 4

Пример 7

Число $1001011_2$ перевести в восьмеричную систему счисления.

Решение . Используя таблицу 4, переведем число из двоичной системы счисления в восьмеричную:

$001 001 011_2 = 113_8$

  • Чтобы перевести число из двоичной системы счисления в шестнадцатеричную, его следует разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, затем каждую тетраду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Чтобы быстро переводить числа из десятичной системы счисления в двоичную, нужно хорошо знать числа "2 в степени". Например, 2 10 =1024 и т.д. Это позволит решать некоторые примеры на перевод буквально за секунды. Одной из таких задач является задача A1 из демо ЕГЭ 2012 года . Можно, конечно, долго и нудно делить число на "2". Но лучше решать по-другому, экономя драгоценное время на экзамене.

Метод очень простой. Суть его такая: если число, которое нужно перевести из десятичной системы, равно числу "2 в степени", то это число в двоичной системе содержит количество нулей, равное степени. Впереди этих нулей добавляем "1".

  • Переведем число 2 из десятичной системы. 2=2 1 . Поэтому в двоичной системе число содержит 1 нуль . Впереди ставим "1" и получаем 10 2 .
  • Переведем 4 из десятичной системы. 4=2 2 . Поэтому в двоичной системе число содержит 2 нуля . Впереди ставим "1" и получаем 100 2.
  • Переведем 8 из десятичной системы. 8=2 3 . Поэтому в двоичной системе число содержит 3 нуля . Впереди ставим "1" и получаем 1000 2.


Аналогично и для других чисел "2 в степени".

Если число, которое нужно перевести, меньше числа "2 в степени" на 1, то в двоичной системе это число состоит только из единиц, количество которых равно степени.

  • Переведем 3 из десятичной системы. 3=2 2 -1. Поэтому в двоичной системе число содержит 2 единицы . Получаем 11 2.
  • Переведем 7 из десятичной системы. 7=2 3 -1. Поэтому в двоичной системе число содержит 3 единицы . Получаем 111 2.

На рисунке квадратиками обозначено двоичное представление числа, а слева розовым цветом-десятичное.


Аналогичен перевод и для других чисел "2 в степени-1".

Понятно, что перевод чисел от 0 до 8 можно сделать быстро или делением, или просто знать наизусть их представление в двоичной системе. Я привела эти примеры, чтобы Вы поняли принцип данного метода и использовали его для перевода более "внушительных чисел", например, для перевода чисел 127,128, 255, 256, 511, 512 и т.д.

Можно встретить такие задачи, когда нужно перевести число, не равное числу "2 в степени", но близкое к нему. Оно может быть больше или меньше числа "2 в степени". Разница между переводимым числом и числом "2 в степени" должна быть небольшая. Например, до 3. Представление чисел от 0 до 3 в двоичной системе надо просто знать без перевода.

Если число больше , то решаем так:

Переводим сначала число "2 в степени" в двоичную систему. А потом прибавляем к нему разницу между числом "2 в степени" и переводимым числом.

Например, переведем 19 из десятичной системы. Оно больше числа "2 в степени" на 3.

16=2 4 . 16 10 =10000 2 .

3 10 =11 2 .

19 10 =10000 2 +11 2 =10011 2 .

Если число меньше числа "2 в степени", то удобнее пользоваться числом "2 в степени-1". Решаем так:

Переводим сначала число "2 в степени-1" в двоичную систему. А потом вычитаем из него разницу между числом "2 в степени-1" и переводимым числом.

Например, переведем 29 из десятичной системы. Оно больше числа "2 в степени-1" на 2. 29=31-2.

31 10 =11111 2 .

2 10 =10 2 .

29 10 =11111 2 -10 2 =11101 2

Если разница между переводимым числом и числом "2 в степени" больше трех , то можно разбить число на составляющие, перевести каждую часть в двоичную систему и сложить.

Например, перевести число 528 из десятичной системы. 528=512+16. Переводим отдельно 512 и 16.
512=2 9 . 512 10 =1000000000 2 .
16=2 4 . 16 10 =10000 2 .
Теперь сложим столбиком:

Цели урока:

  • повторить изученный материал по теме система счисления;
  • научится переводить число из десятичной системы в любую другую позиционную систему счисления и наоборот;
  • освоить принципы перевода чисел из одной системы в другую;
  • развивать логическое мышление.

Ход урока

Вначале урока краткое повторение и проверка домашнего задания..

В каком виде представлена числовая информация в памяти компьютера?

Для чего используются системы счисления?

Какие виды систем счисления вы знаете? Привести свои примеры.

Чем отличаются позиционные системы от непозиционных?.

Цель нашего урока научится переводить число из десятичной системы в любую другую позиционную систему счисления и наоборот. Но в начале мы рассмотрим, как можно

представить любое целое неотрицательное чисело:

В позиционных системах значение записи целого числа определяется по следующему правилу: пусть a n a n-1 a n-2 …a 1 a 0 - запись числа A, а i – цифры, тогда

где p - целое число большее 1, которое называется основанием системы счисления

Для того, чтобы при заданном p любое неотрицательное целое число можно было бы записать по формуле (1) и притом единственным образом, числовые значения различных цифр должны быть различными целыми числами, принадлежащими отрезку от 0 до p-1.

1) Десятичная система

цифры: 0,1,2,3,4,5,6,7,8,9

число 5735 = 5·10 3 +7·10 2 +3·10 1 +8·10 0

2) Троичная система

цифры: 0,1,2

число 201 3 = 2·3 2 +0·3 1 +1·3 0

Замечание: нижним индексом в записи числа обозначается основание системы счисления, в которой записано число. Для десятичной системы счисления индекс можно не писать.

Представление отрицательных и дробных чисел:

Во всех позиционных системах для записи отрицательных чисел так же как и в десятичной системе используется знак ‘–‘. Для отделения целой части числа от дробной используется запятая. Значение записи a n a n-1 a n-2 …a 1 a 0 , a -1 a -2 …a m-2 a m-1 a m числа A определяется по формуле, являющейся обобщением формулы (1):

75,6 = 7·10 1 +5·10 0 +6·10 –1

–2,314 5 = –(2·5 0 +3·5 –1 +1·5 –2 +4·5 –3)

Перевод чисел из произвольной системы счисления в десятичную:

Следует понимать, что при переводе числа из одной системы счисления в другую количественное значение числа не изменяется, а меняется только форма записи числа, так же как при переводе названия числа, например, с русского языка на английский.

Перевод чисел из произвольной системы счисления в десятичную выполняется непосредственным вычислением по формуле (1) для целых и формуле (2) для дробных чисел.

Перевод чисел из десятичной системы счисления в произвольную.

Перевести число из десятичной системы в систему с основанием p – значит найти коэффициенты в формуле (2). Иногда это легко сделать простым подбором. Например, пусть нужно перевести число 23,5 в восьмеричную систему. Нетрудно заметить, что 23,5 = 16+7+0,5 = 2·8+7+4/8 = 2·8 1 +7·8 0 +4·8 –1 =27,48. Понятно, что не всегда ответ столь очевиден. В общем случае применяется способ перевода отдельно целой и дробной частей числа.

Для перевода целых чисел применяется следующий алгоритм (полученный на основании формулы (1)):

1. Найдем частное и остаток от деления числа на p. Остаток будет очередной цифрой ai (j=0,1,2 …) записи числа в новой системе счисления.

2. Если частное равно нулю, то перевод числа закончен, иначе применяем к частному пункт 1.

Замечание 1. Цифры ai в записи числа нумеруются справа налево.

Замечание 2. Если p>10, то необходимо ввести обозначения для цифр с числовыми значениями, большими или равными 10.

Перевести число 165 в семеричную систему счисления.

165:7 = 23 (остаток 4) => a 0 = 4

23:7 = 3 (остаток 2) => a 1 = 2

3:7 = 0 (остаток 3) => a 2 = 3

Выпишем результат: a 2 a 1 a 0 , т.е. 3247.

Выполнив проверку по формуле (1), убедимся в правильности перевода:

3247=3·7 2 +2·7 1 +4·7 0 =3·49+2·7+4 = 147+14+4 = 165.

Для перевода дробных частей чисел применяется алгоритм, полученный на основании формулы (2):

1. Умножим дробную часть числа на p.

2. Целая часть результата будет очередной цифрой am (m = –1,–2, –3 …) записи числа в новой системе счисления. Если дробная часть результата равна нулю, то перевод числа закончен, иначе применяем к ней пункт 1.

Замечание 1. Цифры a m в записи числа располагаются слева направо в порядке возрастания абсолютного значения m.

Замечание 2. Обычно количество дробных разрядов в новой записи числа ограничивается заранее. Это позволяет выполнить приближенный перевод с заданной точностью. В случае бесконечных дробей такое ограничение обеспечивает конечность алгоритма.

Перевести число 0,625 в двоичную систему счисления.

0,625·2 = 1,25 (целая часть 1) => a -1 =1

0,25·2 = 0,5 (целая часть 0) => a- 2 = 0

0,5·2 = 1,00 (целая часть 1) => a- 3 = 1

Итак, 0,62510 = 0,1012

Выполнив проверку по формуле (2), убедимся в правильности перевода:

0,1012=1·2 -1 +0·2- 2 +1·2 -3 =1/2+1/8 = 0,5+0,125 = 0,625.

Перевести число 0,165 в четверичную систему счисления, ограничившись четырьмя четверичными разрядами.

0,165·4 = 0,66 (целая часть 0) => a -1 =0

0,66·4 = 2,64 (целая часть 2) => a -2 = 2

0,64·4 = 2,56 (целая часть 2) => a -3 = 2

0,56·4 = 2,24 (целая часть 2) => a -4 = 2

Итак, 0,16510 ” 0,02224

Выполним обратный перевод, чтобы убедиться, что абсолютная погрешность не превышает 4–4:

0,02224 = 0·4 -1 +2·4 -2 +2·4 -3 +2·4 -4 = 2/16+2/64+2/256 = 1/8+1/32+1/128 = 21/128 = 0,1640625

|0,1640625–0,165| = 0,00094 < 4–4 = 0,00390625

Перевод чисел из одной произвольной системы в другую

В этом случае сначала следует выполнить перевод числа в десятичную систему, а затем из десятичной в требуемую.

Особым способом выполняется перевод чисел для систем с кратными основаниями.

Пусть p и q – основания двух систем счисления. Будем называть эти системы системами счисления с кратными основаниями, если p = qn или q = pn, где n – натуральное число. Так, например, системы счисления с основаниями 2 и 8 являются системами счисления с кратными основаниями.

Пусть p = qn и требуется перевести число из системы счисления с основанием q в систему счисления с основанием p. Разобьем целую и дробную части записи числа на группы по n последовательно записанных цифр влево и вправо от запятой. Если количество цифр в записи целой части числа не кратно n, то надо дописать слева соответствующее количество нулей. Если количество цифр в записи дробной части числа не кратно n, то нули дописываются справа. Каждая такая группа цифр числа в старой системе счисления будет соответствовать одной цифре числа в новой системе счисления.

Переведем 1100001,111 2 в четверичную систему счисления.

Дописав нули и выделив пары цифр, получим 01100001,11102.

Теперь выполним перевод отдельно каждой пары цифр, пользуясь пунктом Перевод чисел из одной произвольной системы в другую.

Итак, 1100001,1112 = 01100001,11102 = 1201,324.

Пусть теперь требуется выполнить перевод из системы с большим основанием q, в систему с меньшим основанием p, т.е. q = p n . В этом случае одной цифре числа в старой системе счисления соответствует n цифр числа в новой системе счисления.

Пример: Выполним проверку предыдущего перевода числа.

1201,324 = 1100001,11102=1100001,1112

В шестнадцатеричной системе есть цифры с числовыми значениями 10,11,12, 13,14,15. Для их обозначения используют первые шесть букв латинского алфавита A, B, C, D, E, F.

Приведем таблицу чисел от 0 до 16, записанных в системах счисления с основаниями 10, 2, 8 и 16.

Число в десятичной системе счисления 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
В восьмеричной 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20
В двоичной 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000
В шестнадцатеричной 0 1 2 3 4 5 6 7 8 9 A B C D E F 10

Для записи шестнадцатеричных цифр можно использовать также строчные латинские буквы a-f.

Пример: Переведем число 110101001010101010100,11 2 в шестнадцатеричную систему счисления.

Воспользуемся кратностью оснований систем счисления (16=2 4). Сгруппируем цифры по четыре, дописав, слева и справа нужное количество нулей

000110101001010101010100,1100 2

и, сверяясь с таблицей, получим: 1A9554,C 16

Вывод:

В какой системе счисления лучше записывать числа – это вопрос удобства и традиций. С технической точки зрения, в ЭВМ удобно использовать двоичную систему, так как в ней для записи числа используются только две цифры 0 и 1, которые можно представить двумя легко различимыми состояниями “нет сигнала ” и “есть сигнал”.

А человеку, напротив, неудобно иметь дело с двоичными записями чисел из-за того, что они более длинные, чем десятичные и в них много повторяющихся цифр. Поэтому, при необходимости работать с машинными представлениями чисел используют восьмеричную или шестнадцатеричную системы счисления. Основания этих систем – целые степени двойки, и поэтому числа легко переводятся из этих систем в двоичную и обратно.

Записываем задание на дом:

а) Запишите дату рождения всех членов вашей семьи в различных системах счисления.

б) Переведите числа из двоичной системы в восьмеричную и шестнадцатеричную, а затем проверьте результаты, выполнив обратные переводы:

а) 1001111110111,011 2 ;

Сдающим ЕГЭ и не только…

Странно, что в школах на уроках информатики обычно показывают ученикам самый сложный и неудобный способ перевода чисел из одной системы в другую. Это способ заключается в последовательном делении исходного числа на основание и сборе остатков от деления в обратном порядке.

Например, нужно перевести число 810 10 в двоичную систему:

Результат записываем в обратном порядке снизу вверх. Получается 81010 = 11001010102

Если нужно переводить в двоичную систему довольно большие числа, то лестница делений приобретает размер многоэтажного дома. И как тут собрать все единички с нулями и ни одной не пропустить?

В программу ЕГЭ по информатике входят несколько задач, связанных с переводом чисел из одной системы в другую. Как правило, это преобразование между 8- и 16-ричными системами и двоичной. Это разделы А1, В11. Но есть и задачи с другими системами счисления, как например, в разделе B7.

Для начала напомним две таблицы, которые хорошо бы знать наизусть тем, кто выбирает информатику своей дальнейшей профессией.

Таблица степеней числа 2:

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10
2 4 8 16 32 64 128 256 512 1024

Она легко получается умножением предыдущего числа на 2. Так, что если помните не все эти числа, остальные нетрудно получить в уме из тех, которые помните.

Таблица двоичных чисел от 0 до 15 c 16-ричным представлением:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0 1 2 3 4 5 6 7 8 9 A B C D E F

Недостающие значения тоже нетрудно вычислить, прибавляя по 1 к известным значениям.

Перевод целых чисел

Итак, начнем с перевода сразу в двоичную систему. Возьмём то же число 810 10 . Нам нужно разложить это число на слагаемые, равные степеням двойки.

  1. Ищем ближайшую к 810 степень двойки, не превосходящую его. Это 2 9 = 512.
  2. Вычитаем 512 из 810, получаем 298.
  3. Повторим шаги 1 и 2, пока не останется 1 или 0.
  4. У нас получилось так: 810 = 512 + 256 + 32 + 8 + 2 = 2 9 + 2 8 + 2 5 + 2 3 + 2 1 .
Далее есть два способа, можно использовать любой из них. Как легко увидеть, что в любой системе счисления её основание всегда 10. Квадрат основания всегда будет 100, куб 1000. То есть степень основания системы счисления - это 1 (единица), и за ней столько нулей, какова степень.

Способ 1 : Расставить 1 по тем разрядам, какие получились показатели у слагаемых. В нашем примере это 9, 8, 5, 3 и 1. В остальных местах будут стоять нули. Итак, мы получили двоичное представление числа 810 10 = 1100101010 2 . Единицы стоят на 9-м, 8-м, 5-м, 3-м и 1-м местах, считая справа налево с нуля.

Способ 2 : Распишем слагаемые как степени двойки друг под другом, начиная с большего.

810 =

А теперь сложим эти ступеньки вместе, как складывают веер: 1100101010 .

Вот и всё. Попутно также просто решается задача «сколько единиц в двоичной записи числа 810?».

Ответ - столько, сколько слагаемых (степеней двойки) в таком его представлении. У 810 их 5.

Теперь пример попроще.

Переведём число 63 в 5-ричную систему счисления. Ближайшая к 63 степень числа 5 - это 25 (квадрат 5). Куб (125) будет уже много. То есть 63 лежит между квадратом 5 и кубом. Тогда подберем коэффициент для 5 2 . Это 2.

Получаем 63 10 = 50 + 13 = 50 + 10 + 3 = 2 * 5 2 + 2 * 5 + 3 = 223 5 .

Ну и, наконец, совсем лёгкие переводы между 8- и 16-ричными системами. Так как их основанием является степень двойки, то перевод делается автоматически, просто заменой цифр на их двоичное представление. Для 8-ричной системы каждая цифра заменяется тремя двоичными разрядами, а для 16-ричной четырьмя. При этом все ведущие нули обязательны, кроме самого старшего разряда.

Переведем в двоичную систему число 547 8 .

547 8 = 101 100 111
5 4 7

Ещё одно, например 7D6A 16 .

7D6A 16 = (0)111 1101 0110 1010
7 D 6 A

Переведем в 16-ричную систему число 7368. Сначала цифры запишем тройками, а потом поделим их на четверки с конца: 736 8 = 111 011 110 = 1 1101 1110 = 1DE 16 . Переведем в 8-ричную систему число C25 16 . Сначала цифры запишем четвёрками, а потом поделим их на тройки с конца: C25 16 = 1100 0010 0101 = 110 000 100 101 = 6045 8 . Теперь рассмотрим перевод обратно в десятичную. Он труда не представляет, главное не ошибиться в расчётах. Раскладываем число на многочлен со степенями основания и коэффициентами при них. Потом всё умножаем и складываем. E68 16 = 14 * 16 2 + 6 * 16 + 8 = 3688 . 732 8 = 7 * 8 2 + 3*8 + 2 = 474 .

Перевод отрицательных чисел

Здесь нужно учесть, что число будет представлено в дополнительном коде. Для перевода числа в дополнительный код нужно знать конечный размер числа, то есть во что мы хотим его вписать - в байт, в два байта, в четыре. Старший разряд числа означает знак. Если там 0, то число положительное, если 1, то отрицательное. Слева число дополняется знаковым разрядом. Беззнаковые (unsigned) числа мы не рассматриваем, они всегда положительные, а старший разряд в них используется как информационный.

Для перевода отрицательного числа в двоичный дополнительный код нужно перевести положительное число в двоичную систему, потом поменять нули на единицы и единицы на нули. Затем прибавить к результату 1.

Итак, переведем число -79 в двоичную систему. Число займёт у нас один байт.

Переводим 79 в двоичную систему, 79 = 1001111. Дополним слева нулями до размера байта, 8 разрядов, получаем 01001111. Меняем 1 на 0 и 0 на 1. Получаем 10110000. К результату прибавляем 1, получаем ответ 10110001 . Попутно отвечаем на вопрос ЕГЭ «сколько единиц в двоичном представлении числа -79?». Ответ - 4.

Прибавление 1 к инверсии числа позволяет устранить разницу между представлениями +0 = 00000000 и -0 = 11111111. В дополнительном коде они будут записаны одинаково 00000000.

Перевод дробных чисел

Дробные числа переводятся способом, обратным делению целых чисел на основание, который мы рассмотрели в самом начале. То есть при помощи последовательного умножения на новое основание с собиранием целых частей. Полученные при умножении целые части собираются, но не участвуют в следующих операциях. Умножаются только дробные. Если исходное число больше 1, то целая и дробная части переводятся отдельно, потом склеиваются.

Переведем число 0,6752 в двоичную систему.

0 ,6752
*2
1 ,3504
*2
0 ,7008
*2
1 ,4016
*2
0 ,8032
*2
1 ,6064
*2
1 ,2128

Процесс можно продолжать долго, пока не получим все нули в дробной части или будет достигнута требуемая точность. Остановимся пока на 6-м знаке.

Получается 0,6752 = 0,101011 .

Если число было 5,6752, то в двоичном виде оно будет 101,101011 .

При переводе чисел из десятичной системы счисления в любую другую, всегда отдельно (по разным правилам) переводится целая и дробная части.

Перевод целой части

Для того, чтобы перевести число из десятичной системы счисления, в любую другую, нужно выполнять целочисленное деление исходного числа на основание той системы счисления, в которую нужно перевести число. При этом важен остаток от деления и частное. Частное нужно делить на основание до тех пор, пока не останется 0. После этого все остатки нужно выписать в обратном порядке - это и будет число в новой системе счисления.

Например, перевод - числа 25 из десятичной системы счисления в двоичную будет выглядеть следующим образом:

Выписав остатки в обратном порядке, получим 25 10 =11001 2 .

Если Вы задумаетесь, то можете легко заметить, что при переводе абсолютно любого числа в двоичную систему счисления самый последний остаток (то есть, самая первая цифра в результате) всегда будет равен самому последнему частному, которое оказалось меньше основания той системы счисления, в которую мы переводим число. Поэтому, деление часто останавливают раньше, чем частное станет равным нулю - в тот момент, когда частное станет просто меньше основания. Например:

Перевод из десятичной системы счисления в любую другую систему счисления производится по абсолютно точно таким же правилам. Вот пример перевода 393 10 в шестнадцатеричную систему счисления:

Выписав остатки в обратном порядке, получим 393 10 =189 16 .

Нужно понимать, что остатки получаются в десятичной системе счисления. При делении на 16 могут появиться остатки не только от 0 до 9, но также и остатки от 10 до 15. Каждый остаток - это всегда ровно одна цифра в той системе счисления, в которую осуществляется перевод.

Например, если при переводе в шестнадцатеричную систему счисления Вы получили такие остатки (выписаны в порядке, как они должны быть записаны в числе): 10, 3, 15, 7, то в шестнадцатеричной системе счисления этой последовательности остатков будет соответствовать число A3F7 16 (некоторые по ошибке записывают число как 103157 16 - понято же, что это совсем другое число, и что если так делать, то получится, что ни в каком шестнадцатеричном числе не появится цифры от A до F).

Перевод дробной части

При переводе дробной части, в отличие от перевода целой части - нужно не делить, а умножать на основание той системы счисления, в которую мы переводим. При этом каждый раз отбрасываются целые части, а дробные части - снова умножаются. Собрав целые части в том порядке, как они были получены - получается дробная часть числа в нужной системе счисления.

Одна операция умножения даёт ровно один дополнительный знак в системе счисления, в которую осуществляется перевод.

При этом существует два условия завершения процесса:

1) в результате очередного умножения Вы получили ноль в дробной части. Понятно, что дальше этот ноль сколько ни умножай - он всё равно останется нулём. Это означает, что число перевелось из десятичной системы счисления в нужную точно.

2) не все числа возможно перевести точно. В таком случае обычно переводят с некоторой точностью. При этом сначала определяют, сколько знаков после запятой будет нужно - именно такое количество раз и нужно будет выполнить операцию умножения.

Вот пример перевода числа 0.39 10 в двоичную систему счисления. Точность - 8 разрядов (в данном случае точность перевода выбрана произвольно):

Если выписать целые части в прямом порядке, то получим 0.39 10 =0.01100011 2 .

Самый первый ноль (на рисунке перечёркнут синим) выписывать не нужно - так как он относится не к дробной части, а к целой. Некоторые по ошибке записывают этот ноль после запятой, когда выписывают результат.

Вот так будет выглядеть перевод числа 0.39 10 в шестнадцатеричную систему счисления. Точность - 8 разрядов в данном случае точность снова выбрана произвольно:

Если выписать целые части в прямом порядке, то получим 0.39 10 =0.63D700A3 16 .

При этом Вы, наверное, заметили, что целые части при умножении получаются в десятичной системе счисления. Эти целые части, полученные при переводе дробной части числа следует интерпретировать точно так же, как и остатки при переводе целой части числа. То есть, если при переводе в шестнадцатеричную систему счисления целые части получились в таком порядке: 3, 13, 7, 10, то соответствующее число будет равно 0.3D7A 16 (а не 0.313710 16 , как некоторые иногда ошибочно записывают).

Перевод числа с целой и дробной частью

Чтобы выполнить перевод числа с целой и дробной частью, нужно отдельно перевести целую часть, а отдельно - дробную, и поэтом эти две части записать вместе.

Например, 25.39 10 =11001.01100011 2 (переводы целой и дробной части - смотрите выше).

Перевод небольших целых чисел из десятичной системы счисления в двоичную в уме

Поскольку при работе с различными системами счисления, особенно при разработке программ, очень часто возникает необходимость перевода небольших целых чисел, то, вообще говоря, имеет смысл запомнить для первых 16 чисел (от 0 до 15).

Но если разобраться, как легко в уме переводить небольшие целые числа от 0 до 15 из десятичной системы счисления в двоичную, то значительную часть таблицы Вы сможете просто вычислять в уме каждый раз, когда это будет нужно. Проделывайте эту операцию много раз, и в какой-то момент Вы сами не сможете понять - Вы уже запомнили таблицу или всё ещё вычисляете.

Итак, чтобы перевести небольшое положительное целое число от 0 до 15 из десятичной системы счисления в двоичную, первое, что нужно понять - это что каждой позиции в двоичном числе соответствует степень двойки. При этом степени двойки для позиций от 0 до 3 запомнить очень просто - это числа 1, 2, 4 и 8:

А число 10 - это 2 плюс 8:

Ну а число 0 - грех не запомнить, так как, чтобы его получить, ничего не нужно складывать.