Рисунок построен с использованием палитры 256. Кодирование графической информации. "Кодирование графической информации

Формы мышления

Первые учения о формах и способах рассуждений возникли в странах Древнего Востока (Китай, Индия), но в основе современной логики лежат учения, созданные древнегреческими мыслителями. Основы формальной логики заложил Аристотель, который впервые отделил логические формы мышления (речи) от его содержания.

Логика - это наука о формах и способах мышления.

Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира. Логика позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны.

Мышление всегда осуществляется в каких-то формах. Основными формами мышления являются понятие, суждение и умозаключение.

Понятие. Понятие выделяет существенные признаки объекта, которые отличают его от других объектов. Объекты, объединенные понятием, образуют некоторое множество. Например, понятие «компьютер» объединяет множество электронных устройств, которые предназначены для обработки информации и обладают монитором и клавиатурой. Даже по этому короткому описанию компьютер трудно спутать с другими объектами, например с механизмами, служащими для перемещения по дорогам и хранящимися в гаражах, которые объединяются понятием «автомобиль».

Понятие - это форма мышления, фиксирующая основные, существенные признаки объекта.

Понятие имеет две стороны: содержание и объем. Содержание понятия составляет совокупность существенных признаков объекта. Чтобы раскрыть содержание понятия, следует найти признаки, необходимые и достаточные для выделения данного объекта из множества других объектов.

Объем понятия определяется совокупностью предметов, на которую оно распространяется. Объем понятия «персональный компьютер» выражает всю совокупность (сотни миллионов) существующих в настоящее время в мире персональных компьютеров.

Высказывание. Свое понимание окружающего мира человек формулирует в форме высказываний (суждений, утверждений). Высказывание строится на основе понятий и по форме является повествовательным предложением.

Высказывания могут быть выражены не только с помощью естественных языков, но и с помощью формальных языков. Например, высказывание на естественном языке имеет вид «Два умножить на два равно четырем», а на формальном, математическом языке оно записывается в виде «2x2 = 4».

Об объектах можно судить верно или неверно, т.е. высказывание может быть истинным или ложным. Истинным будет высказывание, в котором связь понятий правильно отражает свойства и отношения реальных вещей. Примером истинного высказывания может служить следующее: «Процессор является устройством обработки информации».

Ложным высказывание будет в том случае, когда оно не соответствует реальной действительности. Например: «Процессор является устройством печати».

Конечно, иногда истинность того или иного высказывания является относительной. Истинность высказываний может зависеть от взглядов людей, от конкретных обстоятельств и т.д. Сегодня высказывание «На моем компьютере установлен самый современный процессор Pentium 4» истинно, но пройдет некоторое время, появится более мощный процессор, и данное высказывание станет ложным.

Высказывание - это форма мышления, в которой что-либо утверждается или отрицается о реальных предметах, их свойствах

и отношениях между ними. Высказывание может быть либо истинно,

либо ложно.

Высказывание не может быть выражено повелительным или вопросительным предложением, так как оценка их истинности или ложности невозможна.

На основании простых высказываний могут быть построены составные высказывания. Например, высказывание «Процессор является устройством обработки информации, и принтер является устройством печати» является составным высказыванием, состоящим из двух простых.

Если истинность или ложность простых высказываний устанавливается в результате соглашения на основании здравого смысла, то истинность или ложность составных высказываний вычисляется с помощью использования алгебры высказываний.

Приведенное выше составное высказывание истинно, так как истинны входящие в него простые высказывания.

Умозаключение. Умозаключения позволяют на основе известных фактов, выраженных в форме суждений, получать заключение, т.е. новое знание. Примером умозаключений могут быть геометрические доказательства.

Например, если мы имеем суждение «Все углы треугольника равны», то мы можем путем умозаключения доказать, что в этом случае справедливо суждение «Этот треугольник равносторонний».

Умозаключение - это форма мышления, с помощью которой из одного или нескольких суждений (посылок) может быть получено новое суждение (вывод).

Посылками умозаключения по правилам формальной логики могут быть только истинные суждения. Тогда если умозаключение проводится в соответствии с правилами формальной логики, то оно будет истинным. В противном случае можно прийти к ложному умозаключению.

Контрольные вопросы и задания

1. Какие существуют основные формы мышления? Приведите примеры

понятий, суждений и умозаключений.

  • 2. В чем состоит разница между содержанием и объемом понятия?
  • 3. Может ли быть высказывание выражено в форме вопросительного предложения?
  • 4. Как определяется истинность или ложность простого высказывания?

Составного высказывания?

Основные действия над числами - это сложение и вычитание.

  • 1. Сложение двоичных чисел
  • 0 + 0 = 0 0+1 = 1 1+0=1
  • 1 + 1=0 + единица переноса в старший разряд, т.е. 1 + 1=10 2 .

При сложении двоичных чисел в каждом разряде в соответствии с правилами производится сложение двух цифр слагаемых или двух этих цифр и единицы, если имеется перенос из соседнего младшего разряда. В результате получается цифра соответствующего разряда суммы и, возможно, также единица переноса в старший разряд.

Пример 1. Сложить в двоичной системе

  • 2. Вычитание двоичных чисел осуществляется в соответствии со следующими правилами:
  • 0-0 = 0 1-0=1 1-1=0 10 2 -1 = 1

При вычитании двоичных чисел в данном разряде при необходимости занимается единица из следующего, старшего разряда. Эта занимаемая единица равна двум единицам данного младшего разряда. Такое действие производится каждый раз, когда цифра в разряде вычитаемого больше цифры в том же разряде уменьшаемого. Пример 2. Выполните вычитание в двоичной системе следующих чисел:

Операции над положительными и отрицательными числами

Распространенными формами представления чисел со знаками является их представление в прямом, обратном и дополнительном коде.

Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией сложения.

Прямой код числа образуется кодированием знака числа нулем, если число положительно, и единицей, если число отрицательно.

Пример 1. Представьте положительное число 127ю=1111111 2 в прямом коде: 0 1111111

Пример 2. Представьте отрицательное число - 1)0 в прямом коде:

Обратный код числа получается инвертированием всех цифр двоичного кода абсолютной величины числа, кроме разряда знака: нули заменяются единицами, а единицы - нулями.

Пример 3. Представьте отоинательное число - 1 ш в обратном коде:

Пример 4. Представьте отпиттятетткнпе хшг.тто - 1 77 10 в обратном коде:

Код модуля числа Обратный код числа

Дополнительный код числа получается образованием обратного кода с последующим прибавлением единицы к его младшему разряду.

Пример 5. Представьте отрицательное число - 1ю в дополнительном коде: 11111111

Пример 6. Представьте отрицательное число -127ю в дополнительном коде:

Сложение чисел в дополнительном коде

Пример 1. Выполните следующую арифметическую операцию «-5+3».

Наши действия в этом случае таковы:

3. Осуществим сложение чисел.

4. Если результат получился отрицательным, то следует инвертировать все разряды числа, кроме знакового, и в младший разряд результата добавить единицу.

Ответ: - 2, следовательно, все действия выполнены верно.

Пример 2. Выполните следующую арифметическую операцию «5 - 3». Выполняя операцию вычитания и представляя отрицательное число в дополнительном коде, можно операцию вычитания заменить сложением.

1. Представим числа в двоичном коде:

2. Отрицательное число следует представить в дополнительном коде. Для этого инвертируем все разряды числа, кроме знакового, и в младший разряд результата добавим единицу.

3. Осуществим сложение чисел.

  • 4. Если результат получился положительным, то единицу переноса из знакового разряда отбрасывают.
  • 5. Полученное число следует перевести в десятичную систему счисления. Ответ: + 2, следовательно, все действия выполнены верно.

Связь между алгеброй логики и двоичным кодированием

Алгебра логики - раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними. Логическое высказывание - любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Алгебра логики изучает строение (форму, структуру) сложных логических высказываний и способы установления их истинности с помощью алгебраических методов.

Так, например, предложение «8 - четное число» следует считать высказыванием, так как оно истинное. Предложение «Москва - столица Бельгии» тоже высказывание, так как оно ложное.

Разумеется, не всякое предложение является логическим высказыванием. Высказываниями не являются, например, предложения «студент первого курса» и «мороженое - вкусное». Первое предложение ничего не утверждает о студенте, а второе использует слишком неопределенное понятие «вкусное». Вопросительные и восклицательные предложения также не являются высказываниями, поскольку говорить об их истинности или ложности не имеет смысла. Предложения типа «в городе А более миллиона жителей », «у нее голубые глаза » не являются высказываниями, так как для выяснения их истинности или ложности нужны дополнительные сведения: о каком конкретно городе или человеке идет речь.

Такие предложения называются высказывательными формами. Высказыва- тельная форма - повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.

Математический аппарат алгебры логики очень удобен для описания того, как функционируют аппаратные средства компьютера, поскольку основной системой счисления, с которой работает компьютер, является двоичная система счисления, в которой используются только цифры 1 и 0.

Из этого следует:

  • - одни и те же устройства компьютера могут применяться для обработки и хранения как числовой информации, представленной в двоичной системе счисления, так и логических переменных;
  • - на этапе конструирования аппаратных средств алгебра логики позволяет значительно упростить логические функции, описывающие функционирование схем компьютера, и, следовательно, уменьшить число элементарных логических элементов, из десятков тысяч которых состоят основные узлы компьютера.

Данные и команды в компьютере представляются в виде двоичных последовательностей различной структуры и длины. Существуют различные физические способы кодирования двоичной информации. В электронных устройствах компьютера двоичные единицы чаще всего кодируются более высоким уровнем напряжения, чем двоичные нули.

Логический элемент компьютера - это часть электронной логической схемы, которая реализует элементарную логическую функцию.

Простейшими логическими элементами компьютеров являются электронные схемы «И», «ИЛИ», «НЕ», «И-НЕ», «ИЛИ-HE». Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов, как и логических функций, описывают с помощью таблиц истинности. Таблица истинности - это таблица, в которую записаны значения логической функции для каждого из 2 П наборов аргументов на входе. Например, полная таблица истинности выражения с тремя переменными содержит 2 3 =8 строчек, если заданы только 6 из них, то можно найти 2 8 " 6 =2 2 =4 разных логических выражения, удовлетворяющие этим 6 строчкам. Для того чтобы полностью определить логическую функцию, достаточно перечислить либо все наборы, при которых эта функция принимает значения, равные 1, либо все наборы, при которых эта функция принимает значения, равные 0.

Элементарные логические функции и логические элементы

Логические функции, зависящие от одной или двух переменных, называются элементарными. К основным логическим функциям относятся следующие элементарные функции: отрицание, логическое умножение, отрицание от логического умножения, логическое сложение, отрицание от логического сложения, импликация и т.д.

Функция отрицания - это логическая функция от одного аргумента, которая принимает значение 1, если аргумент равен 0, и принимает значение 0, если аргумент равен 1, и называется отрицанием (инверсией) или логической функцией «НЕ».

В обыденной речи мы часто пользуемся словом «НЕ», или словами «НЕВЕРНО, ЧТО», когда хотим что-то отрицать. Пусть, например, кто-то сказал: «На улице холодно». (Обозначим это высказывание А.) Если вы не согласны, вы скажете: «На улице НЕ холодно». Или: «Неверно, что на улице холодно». (Ваше высказывание обозначим В.) Нетрудно заметить, что значения истинности высказываний А и В находятся в определенной связи: если А истинно, то В ложно, и наоборот.

Запись логической функции «НЕ» можно обозначить как F = X, где черта над переменной - признак инверсии, либо как -iX. Логическая функция «НЕ» от одного аргумента описывается таблицей истинности (табл. 8).

Таблица 8. Таблица истинности для логической функции «НЕ»

Логический элемент «НЕ» (инвертор) реализует операцию отрицания. Если на входе этого логического элемента 0, то на выходе 1, а когда на входе 1, на выходе 0.

Условное обозначение инвертора на структурных схемах приведено на рис. 12.

Рис. 12.

Функцией логического умножения п аргументов называется логическая функция, которая принимает значение 1 только в том случае, когда все аргументы равны 1, а 0 - во всех остальных случаях.

Высказывая конъюнкцию, мы утверждаем, что выполняются оба события, о которых идет речь в высказывании. Например, сообщая: «Петровы взяли отпуск за свой счет и уехали в Крым», мы выражаем в своем высказывании свое убеждение в том, что произошли оба этих события.

Функцию логического умножения называют также конъюнкцией или функцией «И». Элементарная функция логического умножения зависит от двух аргументов и описывается следующей таблицей истинности (табл. 9).

Таблица 9. Таблица истинности для логической функции «И»

При записи логической функции «И» возможны следующие варианты: F=X AY;

F=XY, где знаки «Л», «&», « » - знаки, обозначающие операцию логического умножения. Все варианты записи равнозначны.

Рис. 13.

Логический элемент «И» реализует конъюнкцию двух или более логических значений. Условное обозначение на структурных схемах конъюнкции с двумя входами представлено на рис. 13.

Функцией логического сложения п аргументов называется логическая функция, которая принимает значение 0 только в том случае, когда все аргументы равны 0 (т.е. при наборе п нулей), и 1 во всех остальных случаях (т.е. когда хотя бы один аргумент равен единице).

Функцию логического сложения называют также дизъюнкцией или логической функцией «ИЛИ». Сообщая: «Петров смотрит телевизор или смотрит в окно», мы имеем в виду, что хотя бы одно Петров делает. При этом Петров может одновременно смотреть телевизор и смотреть в окно. И в этом случае дизъюнкция будет истинна.

Элементарная дизъюнкция зависит от двух аргументов и описывается следующей таблицей истинности (табл. 10).

Таблица 10. Таблица истинности для логической функции «ИЛИ»

Рис. 14.

При записи логической функции «ИЛИ» возможны следующие варианты:

где знаки «V», «+» обозначают операцию логического сложения.

Логический элемент «ИЛИ» реализует дизъюнкцию двух или более логических значений. Когда хотя бы на одном входе элемента «ИЛИ» будет единица, на ее выходе также будет единица. Условное обозначение на структурных схемах логического элемента «ИЛИ» с двумя входами представлено на рис. 14.

Функция отрицания от логического умножения «И-НЕ» принимает значение 0, когда все аргументы равны 1, и 1 - во всех остальных случаях. Функция отрицания от логического умножения зависит от двух аргументов и описывается следующей таблицей истинности (табл. 11).

Таблица 11. Таблица истинности для функции отрицания от логического умножения

При записи функции отрицания от логического умножения возможны следующие варианты:

Рис. 15.

Логический элемент «И-НЕ» состоит из элемента «И» и инвертора и осуществляет отрицание результата функции И. Условное обозначение на структурных схемах логического элемента «И-НЕ» с двумя входами представлено на рис. 15.

Функция отрицания от логического сложения принимает значение 1, когда все аргументы равны 0, и значение 0 - во всех остальных случаях.

Функция отрицания от логического сложения зависит от двух аргументов и описывается следующей таблицей истинности (табл. 12).

Таблица 12. Таблица истинности для функции отрицания от логического сложения

При записи функции отрицания от логического сложения возможны следующие варианты:

Рис. 16.

Логический элемент «ИЛИ-HE» состоит из элемента «ИЛИ» и инвертора и осуществляет отрицание результата логической функции «ИЛИ». Условное обозначение на структурных схемах логического элемента «ИЛИ-HE» с двумя входами представлено на рис. 16.

В сложных выражениях с использованием логических операций «И», «ИЛИ», «НЕ» сначала выполняется операция отрицания «НЕ», затем операция конъюнкции «И». В последнюю очередь выполняется операция дизъюнкции «ИЛИ». Для того чтобы изменить указанную последовательность выполнения операций, в выражениях следует использовать скобки. Кроме перечисленных функций, одной из важнейших операций является импликация (следование), которая обозначается -> и описывается соответствующей таблицей (табл. 13).

Таблица 13. Таблица истинности для функции импликации

Импликация - это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся ложным тогда и только тогда, когда условие (первое высказывание) истинно, а следствие (второе высказывание) ложно.

Рассмотрим высказывание: «Если завтра будет хорошая погода, то я пойду гулять». Здесь А= Завтра будет хорошая погода и В= Я пойду гулять. Ясно, что человек окажется лжецом лишь в том случае, если погода действительно окажется хорошей, а гулять он не пойдет. Если же погода будет плохой, то независимо от того, пойдет он гулять или нет, во лжи его нельзя обвинить: обещание пойти гулять он давал лишь при условии, что погода будет хорошей.

В обычной речи связка «если..., то» описывает причинно-следственную связь между высказываниями. Но в логических операциях смысл высказываний не учитывается. Рассматривается только их истинность или ложность. Поэтому не надо смущаться «бессмысленностью» импликаций, образованных высказываниями, совершенно не связанными по содержанию. Например, такими: «если на Луне есть вода, то в зоопарке живут тигры», «если клубника - ягода, то в магазине есть хлеб».

Импликация заведомо истинна, если условие А ложно. Другими словами, из неверного условия может следовать все, что угодно. Например, высказывание «Если 2>3, то крокодилы летают» является истинным.

Операция, выражаемая связками «тогда и только тогда», «необходимо и достаточно» называется эквиваленцией или двойной импликацией и обозначается знаками, =. Эквиваленция описывается соответствующей таблицей

Таблица 14. Таблица истинности для функции эквиваленции

Например, сообщая: «Я получу паспорт тогда и только тогда, когда мне исполнится 14 лет», человек утверждает не только то, что после того, как ему исполнится 14 лет, он получит паспорт, но и то, что паспорт он сможет получить только после того, как ему исполнится 14 лет.

Таким образом, высказывание XY истинно тогда и только тогда, когда значения X и Y совпадают. Следует учитывать, что рассмотренную нами операцию - импликацию можно выразить через дизъюнкцию и отрицание:

а эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию:

Каким выражением может быть F?

Построим таблицу истинности для всех предложенных в ответе выражений:

Вычислим логические выражения для четырех предложенных ответов. Видим, что совпали значения логических выражений в столбцах X v Y v Z и F, следовательно, правильный ответ 3.

Пример 2. Для какого из указанных значений X истинно высказывание

Видно, что высказывание представляет собой отрицание выражения ((Х>2) -> -> (Х>3)). Оно истинно, когда ((Х>2) -> (Х>3)) ложно. Импликация ложна в единственном случае: левое высказывание истинно (в нашем случае Х>2 истинно для Х=3 и Х=4), а правое ложно (это справедливо для Х=1, Х=2 и Х=3). Поэтому единственный вариант, когда эта импликация ложна (следовательно, исходное выражение истинно), - третий.

Основные законы алгебры логики

В алгебре логики имеется ряд законов, позволяющих производить равносильные (тождественные) преобразования логических выражений. Правила преобразования логических выражений представлены в табл. 15.

Таблица 15. Правила преобразования логических выражений

двойного отрицания

Отрицать отрицание какого-нибудь высказывания - то же, что утверждать это высказывание

переместительный

(коммутативный)

А Л В = В Л А

А V В = В V А

сочетательный

(ассоциативный)

(А Л В) Л С = А А (В Л С)

(A v В) v С = A v (В v С)

распределительный

(дистрибутивный)

(А Л В) V С = (А V В) А (А VC)

Aa(BvC) = AaBvAa С

де Моргана

А В = А" + В

отрицание логического произведения эквивалентно логической сумме отрицаний множителей

А + В = А -В

отрицание логической суммы эквивалентно логическому произведению отрицаний слагаемых

поглощения

А А (А V В) = А

А V А А В = А

склеивания

(А V В) Л (-А V В) = В

(А А В) v (-А V В) = В

исключения третьего (операция переменной с ее инверсией)

для каждого высказывания имеются лишь две возможности: это высказывание либо истинно, либо ложно.

Порядок выполнения логических операций задается круглыми скобками. Для уменьшения числа скобок считается, что сначала выполняется операция отрицания, затем конъюнкция, и только потом дизъюнкция. В последнюю очередь выполняется импликация и равносильность.

Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной математике. Они служат для упрощения формул и приведения их к определенному виду путем использования основных законов алгебры логики.

Под упрощением формулы, не содержащей операций импликации и эквивален- ции, понимают равносильное преобразование, приводящее к формуле, которая:

  • - либо содержит по сравнению с исходной меньшее число операций конъюнкции и дизъюнкции и не содержит отрицаний неэлементарных формул;
  • - либо содержит меньшее число вхождений переменных.

Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (законы поглощения, склеивания, де Моргана).

Покажем на примерах некоторые приемы и способы, применяемые при упрощении логических формул.

Пример 1.

(законы алгебры логики применяются в следующей последовательности: правило де Моргана, сочетательный закон, правило операций переменной с ее инверсией и правило операций с константами).

Пример 2.

(применяется правило де Моргана, выносится за скобки общий множитель, используется правило операций переменной с ее инверсией).

Пример 3. Какое логическое выражение равносильно выражению

По правилу де Моргана выполним преобразование

Пользуясь правилом двойного отрицания, в итоге получаем: , следовательно, правильный ответ 2.

Контрольные вопросы и задания

  • 1. Расскажите о правилах двоичной арифметики.
  • 2. Прямой, обратный и дополнительный коды числа - поясните разницу между ними.
  • 3. Какая связь существует между двоичным кодированием и алгеброй логики?
  • 4. Какие элементарные логические функции и логические элементы вы знаете? Приведите в качестве примеров их таблицы истинности.
  • 5. Выполните сложение следующих чисел:

6. Выполните вычитание следующих чисел:

  • 7. Опишите связь между алгеброй логики и двоичным кодированием. Приведите примеры логических высказываний.
  • 8. Что такое таблица истинности?
  • 9. Дайте характеристику логической функции НЕ. Приведите ее таблицу истинности. Придумайте несколько высказываний с использованием функции НЕ.
  • 10. Дайте характеристику логической функции И. Приведите ее таблицу истинности. Придумайте несколько высказываний с использованием функции И.
  • 11. Дайте характеристику логической функции ИЛИ. Приведите ее таблицу истинности. Придумайте несколько высказываний с использованием функции ИЛИ.
  • 12. Расскажите о логической операции «импликация». Приведите ее таблицу истинности.
  • 13. Какое логическое высказывание эквивалентно выражению -i (A v -iB д С)?

14. Дан фрагмент таблицы истинности выражения F.

Логический элемент – дискретный преобразователь, который после обработки входных сигналов выдает на выходе сигнал, являющийся значением одной из логических функций. В качестве входных и выходных сигналов используются двоичные сигналы.

Базовыми логическим и элементами компьютера являются : конъюктор, дизъюнктор, инвертор.

На основе базовых логических элементов строятся устройства компьютеров (сумматоры, полусумматоры, ячейки оперативной памяти и другие элементы памяти).

Триггер – устройство для хранения информации в оперативной памяти компьютера, во внутренних регистрах процессора. Триггер позволяет запоминать, хранить и считывать один вид информации. Триггер может находиться в одном из двух устойчивых состояний.

Триггер имеет 2 входа: S-установочный, R-вход сброса; и 2 выхода: Q-прямой и Q-инверсный.

Если на входы поступают сигналы «О,О», то триггер находится в режиме хранения. На выходах сохраняются ранее установленные значения. Если на вход S поступает кратковременный сигнал «1», то триггер переходит в состояние «1», когда сигнал на входе S станет равным нулю, триггер будет сохранять единицу на выходе.

При подаче единицы на вход R триггер переходит в состояние «0». Подача единицы на входы S и R одновременно ЗАПРЕЩЕНА!!!

ЗАКОНЫ ПРЕОБРАЗОВАНИЯ ЛОГИЧЕСКИХ ВЫРАЖЕНИЙ.

Логические выражения называются равносильными, если их истинные значения совпадают при любых значениях переменной.

1) закон двойного отрицания. Инверсия

2) коммутативный закон

3) Сочетательный закон.

· A v (B v C)=(A v B) v C

· A & (B & C)=(A & B) & C

4) распределительный закон.

· Логическое умножение (A v B) & C=(A & C) v (B & C)

· (A & B) v C=(A v C) & (B v C)

5) законы Де Моргана.

· Инверсия(A v B)=инверсия A v инверсия A

6) Закон иденпотентности.

7) исключение констант.

· A v 1=1 логическое сложение A v 0=A

· A & 1=A логическое умножение A & 0=0

8) закон противоречия

· A & инверсия A=0

9) закон исключения третьего.

· Инверсия A v A=1

Алгебра высказываний

Алгебра это наука об общих операциях аналогичных сложению и умножению, которые могут выполняться над высказываниями и другими математическими объектами (множествами, векторами, числами).

Логические операции в алгебре высказываний:

· конъюнкция – это логическое умножение, & - символ

Конъюнкция – это логическая операция, ставящая в соответствие двум простым высказываниям – составное высказывание, являющееся истинным, тогда и только тогда, когда оба исходных высказывания – истины.


· 0 –ложь

· 1 – истина

Таблица истинности «&»

· инверсия – логическое отрицание, «»

Инверсия – это логическая операция, которая каждому простому высказыванию ставит в соответствие составное высказывание, заключающееся в том, что исходное высказывание – отрицается.

Таблица истинности «»

· операция эквиваленция – логическая равнозначность, «<=>»

Эквиваленция – это логическая операция, ставящая в соответствии двум высказываниям составное, являющееся истинным, тогда и только тогда, когда истины оба исходных высказывания или тогда, когда ложны исходное высказывания.

Таблица эквиваленции «<=>»

А В А <=>В

Алгебра логики и логические основы компьютера

Что такое алгебра логики?

Алгебра логики (булева алгебра) – это раздел математики, возникший в XIX веке благодаря усилиям английского математика Дж. Буля. Поначалу булева алгебра не имела никакого практического значения. Однако уже в XX веке ее положения нашли применение в описании функционирования и разработке различных электронных схем. Законы и аппарат алгебры логики стал использоваться при проектировании различных частей компьютеров (память, процессор). Хотя это не единственная сфера применения данной науки.

Что же собой представляет алгебра логики? Во-первых, она изучает методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Во-вторых, булева алгебра делает это таким образом, что сложное логическое высказывание описывается функцией, результатом вычисления которой может быть либо истина, либо ложь (1, либо 0). При этом аргументы функции (простые высказывания) также могут иметь только два значения: 0, либо 1.

Что такое простое логическое высказывание ? Это фразы типа «два больше одного», «5.8 является целым числом». В первом случае мы имеем истину, а во втором ложь. Алгебра логики не касается сути этих высказываний. Если кто-то решит, что высказывание «Земля квадратная» истинно, то алгебра логики это примет как факт. Дело в том, что булева алгебра занимается вычислениями результата сложных логических высказываний на основе заранее известных значений простых высказываний.

Логические операции. Дизъюнкция, конъюнкция и отрицание(инверсия)

Так как же связываются между собой простые логические высказывания, образуя сложные? В естественном языке мы используем различные союзы и другие части речи. Например, «и», «или», «либо», «не», «если», «то», «тогда». Пример сложных высказываний: «у него есть знания и навыки», «она приедет во вторник, либо в среду», «я буду играть тогда , когда сделаю уроки», «5 не равно 6». Как мы решаем, что нам сказали правду или нет? Как-то логически, даже где-то неосознанно, исходя из предыдущего жизненного опыта, мы понимает, что правда при союзе «и» наступает в случае правдивости обоих простых высказываний. Стоит одному стать ложью и все сложное высказывание будет лживо. А вот, при связке «либо» должно быть правдой только одно простое высказывание, и тогда все выражение станет истинным.



Булева алгебра переложила этот жизненный опыт на аппарат математики, формализовала его, ввела жесткие правила получения однозначного результата. Союзы стали называться здесь логическими операторами.

Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, т.к. с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем. Такими операциями являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Часто конъюнкцию обозначают & , дизъюнкцию - || , а отрицание - чертой над переменной, обозначающей высказывание.

При конъюнкции истина сложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.

При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более, чем из двух простых. В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.

Отрицание – это унарная операция, т.к выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.

Таблицы истинности

Логические операции удобно описывать так называемыми таблицами истинности , в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B).

Логические основы компьютера

В ЭВМ используются различные устройства, работу которых прекрасно описывает алгебра логики. К таким устройствам относятся группы переключателей, триггеры, сумматоры.

Кроме того, связь между булевой алгеброй и компьютерами лежит и в используемой в ЭВМ системе счисления. Как известно она двоичная. Поэтому в устройствах компьютера можно хранить и преобразовывать как числа, так и значения логических переменных.