Двоичное число в десятичное. Перевод чисел в двоичную, шестнадцатеричную, десятичную, восьмеричную системы счисления

Замечание 1

Если вы хотите перевести число из одной системы счисления в другую, то удобнее для начала перевести его в десятичную систему счисления, и уже только потом из десятичной перевести в любую другую систему счисления.

Правила перевода чисел из любой системы счисления в десятичную

В вычислительной технике, использующей машинную арифметику, большую роль играет преобразование чисел из одной системы счисления в другую. Ниже приведем основные правила таких преобразований (переводов).

    При переводе двоичного числа в десятичное требуется представить двоичное число в виде многочлена , каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $2$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_2=A_n \cdot 2^{n-1} + A_{n-1} \cdot 2^{n-2} + A_{n-2} \cdot 2^{n-3} + ... + A_2 \cdot 2^1 + A_1 \cdot 2^0$

Рисунок 1. Таблица 1

Пример 1

Число $11110101_2$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $1$ степеней основания $2$, представим число в виде многочлена:

$11110101_2 = 1 \cdot 27 + 1 \cdot 26 + 1 \cdot 25 + 1 \cdot 24 + 0 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 128 + 64 + 32 + 16 + 0 + 4 + 0 + 1 = 245_{10}$

    Для перевода числа из восьмеричной системы счисления в десятичную требуется представить его в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $8$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_8 = A_n \cdot 8^{n-1} + A_{n-1} \cdot 8^{n-2} + A_{n-2} \cdot 8^{n-3} + ... + A_2 \cdot 8^1 + A_1 \cdot 8^0$

Рисунок 2. Таблица 2

Пример 2

Число $75013_8$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $2$ степеней основания $8$, представим число в виде многочлена:

$75013_8 = 7\cdot 8^4 + 5 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 3 \cdot 8^0 = 31243_{10}$

    Для перевода числа из шестнадцатеричной системы счисления в десятичную необходимо его представить в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $16$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_{16} = A_n \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + ... + A_2 \cdot 16^1 + A_1 \cdot 16^0$

Рисунок 3. Таблица 3

Пример 3

Число $FFA2_{16}$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $3$ степеней основания $8$, представим число в виде многочлена:

$FFA2_{16} = 15 \cdot 16^3 + 15 \cdot 16^2 + 10 \cdot 16^1 + 2 \cdot 16^0 =61440 + 3840 + 160 + 2 = 65442_{10}$

Правила перевода чисел из десятичной системы счисления в другую

  • Для перевода числа из десятичной системы счисления в двоичную его необходимо последовательно делить на $2$ до тех пор, пока не останется остаток, меньший или равный $1$. Число в двоичной системе представить как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример 4

Число $22_{10}$ перевести в двоичную систему счисления.

Решение:

Рисунок 4.

$22_{10} = 10110_2$

  • Для перевода числа из десятичной системы счисления в восьмеричную его необходимо последовательно делить на $8$ до тех пор, пока не останется остаток, меньший или равный $7$. Число в восьмеричной системе счисления представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 5

Число $571_{10}$ перевести в восьмеричную систему счисления.

Решение:

Рисунок 5.

$571_{10} = 1073_8$

  • Для перевода числа из десятичной системы счисления в шестнадцатеричную систему его необходимо последовательно делить на $16$ до тех пор, пока не останется остаток, меньший или равный $15$. Число в шестнадцатеричной системе представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 6

Число $7467_{10}$ перевести в шестнадцатеричную систему счисления.

Решение:

Рисунок 6.

$7467_{10} = 1D2B_{16}$

    Для того чтобы перевести правильную дробь из десятичной системы счисления в недесятичную, необходимо дробную часть преобразуемого числа последовательно умножить на основание той системы, в которую ее требуется перевести. Дробь в новой системе будет представлена в виде целых частей произведений, начиная с первого.

    Например: $0,3125_{(10)}$ в восьмеричной системе счисления будет выглядеть как $0,24_{(8)}$.

    В данном случае можно столкнуться с проблемой, когда конечной десятичной дроби может соответствовать бесконечная (периодическая) дробь в недесятичной системе счисления. В данном случае количество знаков в дроби, представленной в новой системе, будет зависеть от требуемой точности. Также нужно отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

Правила перевода чисел из двоичной системы счисления в другую

  • Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Рисунок 7. Таблица 4

Пример 7

Число $1001011_2$ перевести в восьмеричную систему счисления.

Решение . Используя таблицу 4, переведем число из двоичной системы счисления в восьмеричную:

$001 001 011_2 = 113_8$

  • Чтобы перевести число из двоичной системы счисления в шестнадцатеричную, его следует разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, затем каждую тетраду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Самой короткой системой счисления является двоичная. Она полностью основана на позиционной форме записи числа. Основной характеристикой считается принцип удвоения цифры при выполнении перехода от определённой позиции к последующей. Из одной системы счисления в другую можно осуществить перевод как при помощи специальной программы, так и вручную.

Вконтакте

Историческое признание

Появление двоичной СС в истории связано с учёным математиком В.Г. Лейбницем. Именно он впервые заговорил о правилах выполнения операций с числовыми значениями данного рода. Но первоначально этот принцип остался невостребованным . Мировое признание и применение алгоритм получил на заре возникновения вычислительных машин.

Удобство и несложность выполнения операций привели к необходимости более детального изучения данного подраздела арифметики, который стал незаменимым при развитии компьютерной технологии с программным обеспечением. Впервые такие механизмы появились на немецком и французском рынках.

Внимание! Конкретную точку над превосходством двоичной системы по отношению десятичной, именно в данной отрасли, было поставлено в 1946 году и обосновано в статье А. Бекса, Х. Гольдстайна и Дж.Фон Неймана.

Перевод числа из десятичной системы счисления в двоичную.

Особенности двоичной арифметики

Вся двоичная СС основана на применении только двух символов , которые очень точно совпадают с особенностями цифровой схемы. Каждый из символов отвечает за определённое действие, которое зачастую подразумевает два состояния:

  • наличие отверстия или его отсутствие, к примеру, перфокарты или перфоленты;
  • на магнитных носителях отвечает за состояние намагничивания или размагничивания;
  • по уровню сигнала, высокий или низкий.

В науке, в которой применяется СС, введена определённая терминология, суть ее состоит в следующем:

  • Бит – двоичный разряд , который состоит из двух составляющих, несущих в себе определённый смысл. Размещённый слева, определяется как старший и является приоритетным, а справа – младшим, являющийся менее весомым.
  • Байт – это единица, которая состоит из восьми битов .

Многие модули воспринимают и обрабатывают информацию порциями или словами . Каждое слово имеет разный вес и может состоять из 8-ми, 16-ти или 32-х битов .

Правила переводов из одной системы в другую

Одним из важнейших факторов арифметики машин является перевод из одной СС в другую . Поэтому обратим внимание на основные алгоритмы выполнения процесса, который покажет, как перевести число в двоичную систему.

Переводим десятичную систему в двоичную

Первоначально обратимся к вопросу, как осуществить перевод системы из десятичной в двоичную систему счисления. Для этого существует правило перевода из десятичных чисел в двоичный код, которое подразумевает математические действия .

Необходимо число, записанное в десятичном виде разделить на 2 . Деление выполнять до тех пор, пока в частном не останется единица . Если необходима двоичная система счисления перевод осуществляется так:

186:2=93 (ост. 0)

93:2=46 (ост. 1)

46:2=23 (ост. 0)

23:2=11 (ост. 1)

11:2=5 (ост. 1)

5:2=2 (ост.1)

После того, как процесс деления закончен, то единицу в частном и все остатки записываем последовательно в обратном делению порядке . То есть, 18610=1111010. Правило перевода десятичных чисел в СС надо соблюдать всегда.

Перевод числа из десятичной системы в двоичную.

Перевод из десятичной СС в восьмеричную

Аналогичный процесс проводится при переводе из десятичной СС в восьмеричную. Его ещё называют «правилом замещения ». Если в предыдущем примере деление данных осуществлялось на 2, то здесь необходимо делить на 8. Алгоритм перевода числа X10 в восьмеричную состоит из следующих шагов:

  1. Число X10 начинают делить на 8. Полученное частное берём для следующего деления, а остаток записывается, как бит младшего порядка .
  2. Продолжаем деление до тех пор, пока не получим в результат частного равного нулю или остаток, который по своему значению меньше восьми . При этом все остатки записываем, как младшие порядки бита .

К примеру, необходимо перевести число 160110 в восьмеричное.

1601:8=200 (ост. 1)

200:8=25 (ост. 0)

25:8=3 (ост.1)

Итак, получим: 161010=31018.

Перевод из десятичной системы в восьмеричную.

Записываем десятичное число шестнадцатеричным

Перевод из десятичной в шестнадцатиричную СС осуществляется аналогично с использованием системы замещения. Но кроме цифр применяют ещё и буквы латинского алфавита A, B, C, D, E, F. Где A обозначает остаток 10, а F остаток 15. Десятичное число делят на 16. К примеру, переводим 10710 в шестнадцатеричную:

107:16=6 (ост. 11 – заменяем В)

6 – меньше, чем шестнадцать. Деление прекращаем и записываем 10710=6В16.

Переходим из другой системы в двоичную

Следующий вопрос, как преобразовать из восьмеричной в двоичную запись числа. Перевод чисел из любой системы в двоичную выполняется достаточно просто. Помощником в этом деле выступает таблица для систем счисления .

Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов. Для ввода дробных чисел используйте символ. или, . Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку "Получить запись".

Исходное число записано в 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 -ой системе счисления .

Хочу получить запись числа в 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 -ой системе счисления .

Получить запись

Выполнено переводов: 1237177

Системы счисления

Системы счисления делятся на два типа: позиционные и не позиционные . Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.

Пример 1 . Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:

Число 5921 можно записать в следующем виде: 5921 = 5000+900+20+1 = 5·10 3 +9·10 2 +2·10 1 +1·10 0 . Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.

Пример 2 . Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:

Число 1234.567 можно записать в следующем виде: 1234.567 = 1000+200+30+4+0.5+0.06+0.007 = 1·10 3 +2·10 2 +3·10 1 +4·10 0 +5·10 -1 +6·10 -2 +7·10 -3 .

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число 1001101.1101 2 в десятичную систему счисления.
Решение: 10011.1101 2 = 1·2 4 +0·2 3 +0·2 2 +1·2 1 +1·2 0 +1·2 -1 +1·2 -2 +0·2 -3 +1·2 -4 = 16+2+1+0.5+0.25+0.0625 = 19.8125 10
Ответ: 10011.1101 2 = 19.8125 10

2. Перевести число E8F.2D 16 в десятичную систему счисления.
Решение: E8F.2D 16 = 14·16 2 +8·16 1 +15·16 0 +2·16 -1 +13·16 -2 = 3584+128+15+0.125+0.05078125 = 3727.17578125 10
Ответ: E8F.2D 16 = 3727.17578125 10

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число 273 10 в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка : 4·8 2 +2·8 1 +1·8 0 = 256+16+1 = 273 = 273 , результат совпал. Значит перевод выполнен правильно.
Ответ: 273 10 = 421 8

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью . Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число 0.125 10 в двоичную систему счисления.
Решение: 0.125·2 = 0.25 (0 - целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5 (0 - вторая цифра результата), 0.5·2 = 1.0 (1 - третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.125 10 = 0.001 2

Замечание 1

Если вы хотите перевести число из одной системы счисления в другую, то удобнее для начала перевести его в десятичную систему счисления, и уже только потом из десятичной перевести в любую другую систему счисления.

Правила перевода чисел из любой системы счисления в десятичную

В вычислительной технике, использующей машинную арифметику, большую роль играет преобразование чисел из одной системы счисления в другую. Ниже приведем основные правила таких преобразований (переводов).

    При переводе двоичного числа в десятичное требуется представить двоичное число в виде многочлена , каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $2$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_2=A_n \cdot 2^{n-1} + A_{n-1} \cdot 2^{n-2} + A_{n-2} \cdot 2^{n-3} + ... + A_2 \cdot 2^1 + A_1 \cdot 2^0$

Рисунок 1. Таблица 1

Пример 1

Число $11110101_2$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $1$ степеней основания $2$, представим число в виде многочлена:

$11110101_2 = 1 \cdot 27 + 1 \cdot 26 + 1 \cdot 25 + 1 \cdot 24 + 0 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 128 + 64 + 32 + 16 + 0 + 4 + 0 + 1 = 245_{10}$

    Для перевода числа из восьмеричной системы счисления в десятичную требуется представить его в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $8$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_8 = A_n \cdot 8^{n-1} + A_{n-1} \cdot 8^{n-2} + A_{n-2} \cdot 8^{n-3} + ... + A_2 \cdot 8^1 + A_1 \cdot 8^0$

Рисунок 2. Таблица 2

Пример 2

Число $75013_8$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $2$ степеней основания $8$, представим число в виде многочлена:

$75013_8 = 7\cdot 8^4 + 5 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 3 \cdot 8^0 = 31243_{10}$

    Для перевода числа из шестнадцатеричной системы счисления в десятичную необходимо его представить в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $16$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_{16} = A_n \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + ... + A_2 \cdot 16^1 + A_1 \cdot 16^0$

Рисунок 3. Таблица 3

Пример 3

Число $FFA2_{16}$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $3$ степеней основания $8$, представим число в виде многочлена:

$FFA2_{16} = 15 \cdot 16^3 + 15 \cdot 16^2 + 10 \cdot 16^1 + 2 \cdot 16^0 =61440 + 3840 + 160 + 2 = 65442_{10}$

Правила перевода чисел из десятичной системы счисления в другую

  • Для перевода числа из десятичной системы счисления в двоичную его необходимо последовательно делить на $2$ до тех пор, пока не останется остаток, меньший или равный $1$. Число в двоичной системе представить как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример 4

Число $22_{10}$ перевести в двоичную систему счисления.

Решение:

Рисунок 4.

$22_{10} = 10110_2$

  • Для перевода числа из десятичной системы счисления в восьмеричную его необходимо последовательно делить на $8$ до тех пор, пока не останется остаток, меньший или равный $7$. Число в восьмеричной системе счисления представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 5

Число $571_{10}$ перевести в восьмеричную систему счисления.

Решение:

Рисунок 5.

$571_{10} = 1073_8$

  • Для перевода числа из десятичной системы счисления в шестнадцатеричную систему его необходимо последовательно делить на $16$ до тех пор, пока не останется остаток, меньший или равный $15$. Число в шестнадцатеричной системе представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 6

Число $7467_{10}$ перевести в шестнадцатеричную систему счисления.

Решение:

Рисунок 6.

$7467_{10} = 1D2B_{16}$

    Для того чтобы перевести правильную дробь из десятичной системы счисления в недесятичную, необходимо дробную часть преобразуемого числа последовательно умножить на основание той системы, в которую ее требуется перевести. Дробь в новой системе будет представлена в виде целых частей произведений, начиная с первого.

    Например: $0,3125_{(10)}$ в восьмеричной системе счисления будет выглядеть как $0,24_{(8)}$.

    В данном случае можно столкнуться с проблемой, когда конечной десятичной дроби может соответствовать бесконечная (периодическая) дробь в недесятичной системе счисления. В данном случае количество знаков в дроби, представленной в новой системе, будет зависеть от требуемой точности. Также нужно отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

Правила перевода чисел из двоичной системы счисления в другую

  • Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Рисунок 7. Таблица 4

Пример 7

Число $1001011_2$ перевести в восьмеричную систему счисления.

Решение . Используя таблицу 4, переведем число из двоичной системы счисления в восьмеричную:

$001 001 011_2 = 113_8$

  • Чтобы перевести число из двоичной системы счисления в шестнадцатеричную, его следует разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, затем каждую тетраду заменить соответствующей восьмеричной цифрой согласно таблице 4.

| 6 классы | Планирование уроков на учебный год | Перевод двоичных чисел в десятичную систему счисления

Урок 5
Перевод двоичных чисел в десятичную систему счисления
Работа с приложением Калькулятор





Перевод целых десятичных чисел в двоичный код

Способ 1

Попробуем представить число 1409 в виде суммы членов второго ряда.

Воспользуемся методом разностей. Возьмем ближайший к исходному числу, но не превосходящий его член второго ряда и составим разность:

1409 - 1024 = 385.

Возьмем ближайший к полученной разности, но не превосходящий ее член второго ряда и составим разность:

385 - 256 = 129.

Аналогично составим разность: 129 - 128 = 1.

В итоге получим:

1409 = 1024 + 256 + 128 + 1 = 1 1024 + 0 512 + 1 256 + + 1 128 + 0 64 + 0 32 + 0 16 + 0 8 + 0 4 + 0 2 + 1 1.

Мы видим, что каждый член второго ряда может либо не входить в сумму, либо входить в нее только один раз.


Числа 1 и 0, на которые умножаются члены второго ряда, также составляют исходное число 1409, но в его другой, двоичной записи: 10110000001.

Результат записывают так:

1409 10 = 10110000001 2 .

Исходное число мы записали с помощью 0 и 1, другими словами, получили двоичный код этого числа, или представили число в двоичной системе счисления.

Способ 2

Этот способ получения двоичного кода десятичного числа основан на записи остатков от деления исходного числа и получаемых частных на 2, продолжаемого до тех пор, пока очередное частное не окажется равным 0.

Пример:


В первую ячейку верхней строки записано исходное число, а в каждую следующую - результат целочисленного деления предыдущего числа на 2.

В ячейках нижней строки записаны остатки от деления стоящих в верхней строке чисел на 2.

Последняя ячейка нижней строки остается пустой. Двоичный код исходного десятичного числа получается при последовательной записи всех остатков, начиная с последнего: 1409 10 = 10110000001 2 .

Первые 20 членов натурального ряда в двоичной системе счисления записываются так: 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011,1100, 1101,1110,1111, 10000. 10001. 10010. 10011. 10100. 

Перевод целых чисел из двоичной системы счисления в десятичную

Способ 1

Пусть имеется число 111101 2 . Его можно представить так:

Способ 2

Возьмем то же число 111101 2 . Переведем единицу 6-го разряда (первая слева в записи числа) в единицы 5-го разряда, для чего 1 умножим на 2, ибо единица 6-го разряда в двоичной системе содержит 2 единицы 5-го разряда.

К полученным 2 единицам 5-го разряда прибавим имеющуюся единицу 5-го разряда. Переведем эти 3 единицы 5-го разряда в 4-й разряд и прибавим имеющуюся единицу 4-го разряда: 3 2 + 1 = 7.

Переведем 7 единиц 4-го разряда в 3-й разряд и прибавим имеющуюся единицу 3-го разряда: 7 2 + 1 = 15.

Переведем 15 единиц 3-го разряда во 2-й разряд: 15 2 = 30. В исходном числе во 2-м разряде единиц нет.

Переведем 30 единиц 2-го разряда в 1-й разряд и прибавим имеющуюся там единицу: 30 2 + 1 = 61. Мы получили, что исходное число содержит 61 единицу 1-го разряда.

Письменные вычисления удобно располагать так:

Переводить целые числа из десятичной системы счисления в двоичную систему счисления и обратно можно с помощью приложения Калькулятор .

Проведем небольшой эксперимент .

1. Запустите приложение Калькулятор и выполните команду [Вид-Инженерный] . Обратите внимание на группу переключателей, определяющих систему счисления :

2. Убедитесь, что Калькулятор настроен на работу в десятичной системе счисления. С помощью клавиатуры или мыши введите в поле ввода произвольное двузначное число. Активизируйте переключатель Bin и проследите за изменениями в окне ввода. Вернитесь в десятичную систему счисления. Очистите поле ввода.

3. Повторите пункт 2 несколько раз для других десятичных чисел.

4. Настройте Калькулятор на работу в двоичной системе счисления. Обратите внимание на то, какие кнопки Калькулятора и цифровые клавиши клавиатуры вам доступны. Поочередно введите двоичные коды 5-го, 10-го и 15-го членов натурального ряда и с помощью переключателя Dec переведите их в десятичную систему счисления.