Переменные состояния динамической системы

А б в

Накопителем энергии - емкостью

Расчет переходных процессов в цепях с одним

Электромагнитные процессы при переходном процессе в таких цепях обусловлены запасом электрической энергии в емкости С и рассеиванием этой энергии в виде тепла на активных сопротивлениях цепи. При составлении дифференциального уравнения следует в качестве неизвестной функции выбрать напряжение u C на емкости. Следует отметить, что при расчете установившихся режимов, т. е. при определении начальных условий и принужденной составляющей, сопротивление емкости в цепях постоянного тока равно бесконечности.

Пример 6.2. Включение последовательной цепи R,C на постоянное напряжение.

Цепь (рис. 6.3, а ), состоящая из последовательно соединенных сопротивления R = 1000 Ом и емкости С = 200 мкФ, в некоторый момент времени подключается к постоянному напряжению U= 60 В. Требуется определить ток и напряжение емкости в переходном процессе и построить графики u C (t ), i (t ).

R i R i, A u, B

U C U C t = 0.02,c

0 t 2t 3t t , с

Решение. 1. Определяем начальные условия. Начальное условие u C (-0) = 0, так как цепь до коммутации была отключена (полагаем достаточно длительное время).

2. Изображаем электрическую цепь после коммутации (рис. 6.3, б ), указываем направления тока и напряжений и для нее составляем уравнение по второму закону Кирхгофа

или .

3. Преобразуем уравнение п.2 в дифференциальное. Для этого, подставив вместо тока i известное уравнение , получим:

4. Решение уравнения (искомое напряжение на емкости) ищем в виде:

.

5. Определяем . Так как в цепи постоянного тока в установившемся режиме сопротивление емкости равно бесконечности (при этом ), то все напряжение будет приложено к емкости. Поэтому

u C пр =U= 60 В.

6. Составляем однородное дифференциальное уравнение

решением которого будет функция

7. Составляем характеристическое уравнение RC l + 1= 0, корень которого равен

Постоянная времени

8. Запишем решение .

9. Согласно второму закону коммутации и начальным условиям

10. Определим постоянную интегрирования А путем подстановки t =0 в уравнение п.8

Напряжение на емкости в переходном процессе

11. Ток в цепи можно определить по уравнению

или по уравнению п. 2

Графики u C (t ) и i (t ) представлены на рис. 6.3, в .

Мгновенные значения токов и напряжения, определяющие энергетическое состояние электрической цепи, называются в данном методе переменными, а сам метод назван методом переменных состояния.

Этот метод основан на составлении системы дифференциальных уравнений и, как правило, численном их решении с помощью ЭВМ.



В качестве неизвестных здесь следует принимать переменные, которые не имеют разрывов, т.е. за время не должно быть скачкообразного изменения этих величин. Такими переменными, следовательно, должны быть ток i и потокосцепление в индуктивности, напряжение и заряд на емкости. В противном случае при численном решении производных в точках, где имеется разрыв, возникает бесконечно большая величина, что недопустимо.

Существуют различные численные методы расчета дифференциальных уравнений. Это методы Эйлера, Рунге-Кутта и другие, которые отличаются друг от друга точностью расчета, объемом и временем вычислений. При этом, чем больше точность вычислений, тем больше требуется времени для решения.

1. Определить начальные условия.

2. Составить систему дифференциальных уравнений.

3. Все переменные в уравнениях п.2 выразить через токи или потокосцепления в индуктивностях и напряжения или заряды на емкостях.

4. Все уравнения п.3 свести к нормальной форме Коши.

Как указывалось выше САУ, независимо от природы составляющих его звеньев, может быть описана подобными дифференциальными уравнениями (2.1). Эти способы относятся к так называемым внешним описаниям системы. Наоборот, внутреннее описание дается в переменных состояния, предпочтительно используется для тех систем, которые имеют более одного входа и выхода. При этом под переменными состояния системы понимается набор переменных , производные первого порядка от которых входят в математическую модель САУ. С другой стороны, под переменными состояния понимается совокупность переменных, значения которых наряду с входным воздействием позволяет определить будущее состояние системы и выходные величины . Математическая модель системы в переменных состояния удобна для компьютерного анализа.

Пусть линейная система, характеризуется вектором состояния , составленным из n -переменных состояния. На вход системы поступают входные управляющие сигналы . Система описывается следующими уравнениями состояния в векторном виде:

(3.2)

где и - матрицы, составленные из постоянных коэффициентов, имеют вид:

, .

Кроме уравнения (3.2) для системы можно составить следующее матричное уравнение:

(3.3)

Здесь - вектор выходных величин. Матрицы постоянных величин имеют вид

.

Решение систем уравнений (3.2) и (3.3) для некоторого момента времени t = t 0 позволяет найти для времени t>t 0 , т. е. определить будущее состояние системы, а также дает возможность определить выходные величины .

Из системы уравнений (3.2) и (3.3) можно исключить вектор . В этом случае преобразование «вход-выход» может быть описан линейными дифференциальными уравнениями n-го порядка с постоянными коэффициентами в виде (2.1).

Все рассматриваемые виды описаний тесно взаимосвязаны, поэтому, зная одно из них, можно получить остальные. Например, связь между матрицами , , описания в пространстве состояний и комплексной передаточной функцией системы W(s) задается уравнением

W(s)= (sE- ) -1

где s  оператор Лапласа, E  единичная матрица.

Управляемость и наблюдаемость

В п-мерном пространстве состояний каждому состоянию системы соответствует не­которое положение изображающей точки, определяемое значениями переменные состояния (i = 1, 2,... п).

Пусть в пространстве состояний заданы два множества и . Рассматриваемая система будет управляемой, если существует управление , определенное на конечном интерва­ле времени 0, переводящее изображающую точку в пространстве из подобласти G 1 в подобласть G 2 .

Система называется наблюдаемой, если в формирова­нии вектора выходных координат участвуют все состав­ляющие вектора переменных состояния . Если ни одна из составляющих вектора не влияет на формирование выхода системы , то такая система будет ненаблюдаемой.

Анализ управляемости и наблюдаемости выполняется с помощью матриц управляемости и наблюдаемости или с помощью грамианов управляемости и наблюдаемости .

Сформируем на основе матриц , , две вспомогательные матрицы

R = [ , , ..., n -1 ], D = [ , ,…, n -1 ]

Mатрицы R и D называются соответственно матрицей управляемости и матрицей наблюдаемости системы. В пакете MATLAB их можно построить с помощью команд ctrb и obsv .

Для того чтобы система (3.2) была управляемой, необходимо и

достаточно, чтобы матрица управляемости имела полный ранг rankR = n.

Для того чтобы система (3.2) была наблюдаемой, необходимо и достаточно, чтобы матрица наблюдаемости имела полный ранг rankD=n.

В случае систем с одним входом и одним выходом матрицы R и D квадратные, поэтому для проверки управляемости и наблюдаемости достаточно вычислить определители матриц R и D. Если они не равны нулю, то матрицы имеют полный ранг.

Лекция 4. Оценка функционирования САУ

Оценка статических свойств

В зависимости от процессов, происходящих в САУ различают два режима функционирования работы САУ и их элементов: динамический и статический.

Переходному процессу соответствует динамический режим функционирования САУ и их элементов. Этому режиму в ТАУ уделяется наибольшее время. В динамическом режиме величины, определяющие состояние САУ и их элементов изменяется во времени. Выше были представлены математические модели САУ в динамическом режиме в виде дифференциальных уравнений n -го (2.1) или в виде уравнений состояния (3.2, 3.3).

Наоборот, установившийся процесс в САУ соответствует статическему режиму функционирования, при котором величины, характеризующие состояние САУ не изменяются во времени. Для оценки САУ в статическом (установившемся) режиме используется показатель называемый точностью управления. Этот показатель определяется по статической характеристике САУ.

Рис. 4.1. Статические характеристики статических и астатических систем

Статическая характеристика САУ представляет зависимость установившегося значения выходного параметра – y 0 от входного параметра – u 0 при постоянном возмущении или же зависимость выходного параметра - y 0 в установившемся режиме от возмущения–f при постоянном входном параметре. Уравнения статики САУ имеют вид или . В общем случае уравнения могут быть нелинейным. Рассмотрим статическую характеристику элементов или САУ в целом (рис. 4.1) построенную по второму уравнению. Если установившееся значение ошибки в системе зависит от установившегося значения возмущения f , то система называ­ется статической (Рис.4.1,а), а если не зависит - то астатической (Рис.4.1,б).

Относительная статическая ошибка, или статизм, системы равен

Также, статизм можно характеризовать коэффициентом статизма , равным тангенсу угла наклона статической характеристики (Рис. 3.1, а).

Эффективность статического регулирования САУ в установившемся режиме оценива­ют по так называемой степени точности управления, равной отношению абсолютной статической ошибки неавтоматизированного объек­та управления (без регулятора) к абсо­лютной статической ошибке автоматической системы.

В некоторых случаях статическая ошибка нежелательна, тогда переходят к астатическому регулированию или вводят компенсирующие воздействия на возмущения.

Расчет переходных процессов в линейных электрических цепях методом переменных состояния

Это наиболее универсальный метод расчета цепей как них, так и нелинейных. Метод используется для расчета цепей высокого порядка, когда применение других методов расчета нецелесообразно или практически невозможно. Метод переменных состояния основан на решении уравнений состояния (первого порядка)записанных в форме Коши. Для решения системы уравнений первого порядка разработаны численные методы, позволяющие автоматизировать расчет переходных процессов с ЭВМ. Таким образом, метод переменных состояния - один из расчета переходных процессов, ориентированный прежде всего на применение ЭВМ.

Для линейной цепи с постоянными сосредоточенными параметрами ток каждой ветви, напряжение между выводами, заряд на обкладках, конденсатора и т. д. можно найти как решение дифференциального уравнения, составленного для этого тока, напряжения, заряда и т.д., исключением других токов и напряжений из системы уравнений Кирхгофа:

Введением переменных

уравнение (1.1) сводится к эквивалентной системе дифференциальных уравнений первого порядка:

(1.2)

Здесь переменными, которые называются переменными состояния, служит переменная X и ее производные. При этом предполагается, что цепь имеет только независимые источники и не содержит индуктивных сечений и емкостных контуров. В противном случае составление уравнений становится намного сложнее

1. Формирование уравнений переменных состояния

Энергетическое состояние цепи, а следовательно, и переходный процесс в любой цепи определяется энергией магнитного поля, запасенной в индуктивностях, и энергией электрического поля, запасенной в емкостях. Запасы энергии в реактивных элементах определяют токи в индуктивностях и напряжения емкостей, т.е. они определяют энергетическое состояние цепи и поэтому принимаются в качестве независимых переменных состояния.

Любая система уравнений, определяющая состояние цепи, называется уравнениями состояния. Токи в индуктивных элементахи напряжения на емкостных элементах
представляют независимыеначальные условия
цепи и должны быть известны или рассчитаны. Через них выражаются искомые величины во времяпереходного процесса.

Действующие источники энергии принято называть входными величинами
,а искомые величины (токи и напряжения) - выходными величинами
.

Для цепи с n независимыми токами и напряжениями
должны быть заданы еще n независимых начальных условий. Для операций с большим числом переменных используют методы матричного исчисления.

Сокращенно дифференциальные уравнения состояния, описывающие цепь по законам Кирхгофа, записываются в матричной форме:

, (1.3)

где X - вектор-столбец (размером n х 1) произвольных переменных состояния; V - вектор-столбец (размером m х 1) внешних воздействий (ЭДС и токов источников); А - квадратная матрица порядка n (основная); В - матрица связи между входами цепи и переменными состояния (размера n х m). Элементы этих матриц определяются топологией и параметрами цепи
,m - число входов, n - число переменных состояния.

Для выходных величин (если определяются не токи в индуктивностях и напряжения на емкостных элементах) необходимо добавить еще уравнение в матричной форме:

(1.4)

где Y - вектор - столбец искомых токов и напряжений на выходе (размерен 1 х 1), 1 - число выходов; С - матрица связи переменных состояния с выходами цепи (п х 1); D - матрица непосредственной связи входов и выходов цепи (размером 1 х m). Элементы матриц зависят от топологии и значений параметров цепи
.

Систему матричных уравнений

;
(1.5)

можно представить в виде структурной схемы (рис.1.3).

1.1. Составление уравнений состояния цепи

методом наложения

Пусть дана схема цепи после коммутации

Будем считать, что переменные состояния заданы. Рассматриваемую цепь (рис.2) заменим после коммутации эквивалентной (рис.3), у которой заданный ток представлен источником тока,заданное напряжение
источником напряжения
.

Применив метод наложения (положительные направления выбраны), запишем напряжения
и токи
(сначала учитываемдействие источника затем
и далее источников, действующих в цепи).

От действия :

;
;

от действия
:

;
;

от действия е:

;
,

а полный ток
и напряжение .

(1.6)

Учитывая, что
и
получим

т.е в матричном виде уравнение (1.7) запишемся

(1.8)

1.2. Составление уравнений состояния цепи с помощью

законов Кирхгофа

Уравнения (1.7) можно получить и из уравнений Кирхгофа исключением токов и напряжений резистивных элементов. По законам Кирхгофа уравнения для цепи (см.рис. 2) запишем в виде

(1.9)

Разрешим первое уравнение системы относительно , атретье, учитывая, что
, относительно. Тогда

(1.10)

Переменные
иявляются переменными состояния длярассматриваемой цепи. В правой части системы (1.10) присутствует переменная , не являющаяся независимой переменной состояния. Для ее исключения перепишем второе уравнение системы (1.9) в виде

(1.11)

и подставим сюда
.

Полученное из (1.11) значение тока

(1.12)

подставим в систему (1.10).

Получим систему уравнений в переменных состояния
для исследуемой цепи

(1.13)

где X, X, V, А, В соответствуют системе уравнений (1.7).

Пусть в рассматриваемом примере требуется определить токи и . Следовательно и будут выходными величинами цепии их необходимо представить в виде
,
.Ток уже определен в требуемом виде (1.12), а ток
.Тогда вторая система уравнений в переменных состояния
примет вид

(1.14)

В матричной форме система уравнений (1.14) запишется в виде

(1.15)

В частном случае, если выходными переменными является переменные состояния
то матрица С принимает вид диагональной матрицы, а элементы матрицы D равны нулю.

Уравнения состояния решаются на компьютерах численными методами.

Уравнениями состояния электрической цепи называют любую систему дифференциальных уравнений, которая описывает состояние (режим) данной цепи. Например, система уравнений Кирхгофа является уравнениями состояния цепи, для которой она составлена.

В более узком смысле в математике уравнениями состояния называют систему дифференциальных уравнений 1-го порядка, разрешенных относительно производных (форма Коши). Система уравнений состояния в обобщенной форме имеет вид:

Та же система уравнений в матричной форме:

или в обобщённой матричной форме:

Система уравнений состояния формы Коши решается методом численного интегрирования (метод Эйлера или метод Рунге-Кутта) на ЭВМ по стандартной программе, которая должна быть в пакете стандартных программ. При отсутствии такой программы в пакете она легко может быть составлена по следующему алгоритму (метод Эйлера) для к-го шага:

Значения производных на к-ом шаге:

Значения переменных на к-ом шаге:

Для определения значений переменных и их производных на 1-м шаге ин¬тегрирова¬ния используются их значения на момент t=0, т.е. их начальные условия x1(0), x2(0)...xn(0).

Уравнения состояния формы Коши для заданной схемы могут быть получены из системы уравнений Кирхгофа путем их преобразования. Для этой цели: а) из системы уравнений Кирхгофа методом подстановки исключаются ""лишние"" переменные, имеющие зависимые начальные условия, и оставляют переменные iL(t) и uC(t), которые не изменяются скачком и имеют независи-мые начальные условия iL(0) и uC(0); б) оставшиеся уравнения решаются относительно производных и приводятся их к форме Коши.

В случае сложных схем уравнения состояния формы Коши могут быть составлены топологическими методами с использованием матриц соединений [A] и [B].

Последовательность расчета переходного процесса методом переменных состояния выглядит так:

1. Производится расчет схемы в установившемся режиме до коммутации и определяются независимые начальные условия iL(0) и uC(0).

2. Составляется система дифференциальных уравнений по законам Кирхгофа для схемы после коммутации.

3. Методом исключения ""лишних"" переменных система уравнений Кирхгофа преобразуется в систему уравнений Коши, составляются матрицы коэффициентов.

4. Выбирается расчетное время (продолжительность переходного процесса) и число шагов интегрирования N.

5. Решение задачи выполняется на ЭВМ по стандартной программе. Выходную функцию получают в виде графической диаграммы x=f(t)или в виде таблицы координат функций для заданных моментов времени.

Пример. Для схемы рис. 74.1 с заданными параметрами элементов (e(t)=Emsin(ωt+ψE), R, R1, R2, R3, L1, L2, C) выполнить расчет переходного процесса и определить функцию uab(t).


1. Выполняется расчет схемы в установившемся режиме переменного тока до коммутации и определяются начальные условия i1(0), i2(0), uC(0).

2. Составляется система дифференциальных уравнений по законам Кирхгофа:

3. Система уравнений Кирхгофа преобразуется в систему уравнений Коши.

Для этой цели из (1) выражаем

и делаем подстановку в (1) и (2), а из (4) делаем подстановку в (1). Тогда получим:


Введем обозначения.

Эта процедура описывает, как определить переменную пакета, в которой хранится информация состояния CDC.

Переменная состояния CDC загружается, инициализируется и обновляется с помощью задачи «Управление CDC» и используется компонентом потока данных «Источник CDC» в целях определения текущего диапазона обработки для записей с данными об изменениях. Переменная состояния CDC может быть определена в контейнере, который является общим для задачи «Управление CDC» и источника CDC. Такое определение может быть сделано на уровне пакета, а также в других контейнерах, таких как контейнер цикла.

Изменять вручную значение переменной состояния CDC не рекомендуется, но выполнение этой операции может оказаться полезным для ознакомления с содержимым переменной.

В следующей таблице приведено общее описание компонентов значения переменной состояния CDC.

Компонент Description
Это имя текущего состояния CDC.
CS Это обозначает точку начала текущего диапазона обработки (Current Start).
Это последний регистрационный номер транзакции в журнале, обработанный во время предыдущего запуска CDC.
CE Это обозначает конечную точку текущего диапазона обработки (Current End). Наличие компонента CE в состоянии CDC указывает на то, что пакет CDC обрабатывается в данный момент или что произошел сбой пакета CDC до полного завершения обработки всего диапазона CDC.
Это последний номер LSN, который должен быть обработан во время текущего выполнения CDC. Всегда предполагается, что последний последовательный номер, который должен быть обработан, является максимальным (0xFFF…).
IR Это обозначает начальный диапазон обработки.
Это номер LSN изменения прямо перед началом первоначальной загрузки.
Это номер LSN изменения непосредственно после завершения первоначальной загрузки.
TS Это обозначает отметку времени последнего обновления состояния CDC.
> Это десятичное представление 64-разрядного свойства System.DateTime.UtcNow.
ER Оно отображается в случае сбоя последней операции и содержит краткое описание причины ошибки. При наличии этого компонента он всегда отображается последним.
Это краткое описание ошибки.

Номера LSN и последовательные номера кодируются в виде шестнадцатеричной строки длиной до 20 знаков, представляющей значение LSN Binary(10).

В следующей таблице описаны возможные значения состояния CDC.

Состояние Description
(INITIAL) Это исходное состояние до выполнения какого-либо пакета в текущей группе CDC. Это состояние также имеет место, если состояние CDC пусто.
ILSTART (запуск начальной загрузки) Это состояние, когда запускается начальная загрузка пакета после вызова задачи «Управление CDC» операцией MarkInitialLoadStart .
ILEND (завершение начальной загрузки) Это состояние, когда начальная загрузка пакета успешно завершается после вызова задачи «Управление CDC» операцией MarkInitialLoadEnd .
ILUPDATE (обновление начальной загрузки) Это состояние после выполнения пакета обновления тонкого канала после начальной загрузки во время продолжения обработки диапазона начальной обработки. Это происходит после вызова задачи «Управление CDC» операцией GetProcessingRange .
TFEND (завершение обновления тонкого канала) Это состояние, ожидаемое для регулярного выполнения CDC. Оно показывает, что предыдущее выполнение завершилось успешно и можно начинать новое выполнение с новым диапазоном обработки.
TFSTART Это состояние, которое возникает при последующем выполнении пакета обновления тонкого канала после вызова задачи "Управление CDC" операцией GetProcessingRange .

Оно показывает, что регулярное выполнение CDC начато, но еще не завершено или завершено неверно (MarkProcessedRange ).

TFREDO (повторная обработка обновления тонкого канала) Это состояние операции GetProcessingRange , наступающее после TFSTART. Оно показывает, что предыдущее выполнение не завершилось успешно.

Если используется столбец __$reprocessing, он получает значение 1, чтобы показать, что пакет может повторно обрабатывать строки, уже находящиеся в целевой базе данных.

ERROR Группа CDC находится в состоянии ERROR.

Ниже приведены примеры значений переменной состояния CDC.

    ILSTART/IR/0x0000162B158700000000//TS/2011-08-07T17:10:43.0031645/

    TFEND/CS/0x0000025B000001BC0003/TS/2011-07-17T12:05:58.1001145/

    TFSTART/CS/0x0000030D000000AE0003/CE/0x0000159D1E0F01000000/TS/2011-08-09T05:30:43.9344900/

    TFREDO/CS/0x0000030D000000AE0003/CE/0x0000159D1E0F01000000/TS/2011-08-09T05:30:59.5544900/

Определение переменной состояния CDC

    В SQL Server Data Toolsоткройте пакет SQL Server 2016 Integration Services (SSIS) , в котором имеется поток CDC, где необходимо определить переменную.

    Щелкните вкладку Обозреватель пакетов и добавьте новую переменную.

    Присвойте переменной имя, которое поможет обозначить ее как переменную состояния.

    Назначьте переменной тип данных String .

Не присваивайте переменной значение в составе ее определения. Значение должно быть задано задачей «Управление CDC».

Если намечено использовать задачу «Управление CDC» с параметром Автоматическое сохранение состояния , то переменная состояния CDC будет считываться из указанной таблицы состояния в базе данных и после обновления снова записываться в ту же таблицу при изменении ее значения. Дополнительные сведения о таблице состояния см. в разделах и .

Если не используется задача «Управление CDC» с параметром автоматического сохранения состояния, то необходимо загружать значение переменной из постоянного хранилища, в котором это значение было сохранено в последний раз при прогоне пакета, а затем снова записывать его в постоянное хранилище после завершения работы с текущим диапазоном обработки.