Искусственные переменные симплекс метод. Решение задач линейного программирования методом искусственного базиса

x 1

+x 2

+x 3

x 1

+x 2

+x 3

x 1

+x 2

+x 3

≤ = ≥

≤ = ≥

≤ = ≥

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Симплекс метод

Примеры решения ЗЛП симплекс методом

Пример 1. Решить следующую задачу линейного программирования:

Правая часть ограничений системы уравнений имеет вид:

Запишем текущий опорный план:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-3), следовательно в базис входит вектор x при . min (40:6, 28:2)=20/3 соответствует строке 1. Из базиса выходит вектор x 3 . Сделаем исключение Гаусса для столбца x 2 , учитывая, что ведущий элемент соответствует строке 1. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 2, 3, 4 со строкой 1, умноженной на -1/3, 1/6, 1/2, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Данный опорный план не является оптимальным, так как в последней строке есть отрицательный элемент (-3), следовательно в базис входит вектор x 1 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при . min(44/3:11/3, 62/3:5/3)=4 соответствует строке 2. Из базиса выходит вектор x 4 . Сделаем исключение Гаусса для столбца x 1 , учитывая, что ведущий элемент соответствует строке 2. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 1, 3, 4 со строкой 2, умноженной на 1/11, -5/11, 9/11, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Текущий опорный план является оптимальным, так как в строках 4 под переменными нет отрицательных элементов.

Решение можно записать так: .

Значение целевой функции в данной точке: F (X )=.

Пример 2. Найти максимум функции

Р е ш е н и е.

Базисные векторы x 4 , x 3 , следовательно, все элементы в столбцах x 4 , x 3 , ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца x 4 , кроме ведущего элемента. Для этого сложим строку 3 со строкой 1, умноженной на 4. Обнулим все элементы столбца x 3 , кроме ведущего элемента. Для этого сложим строку 3 со строкой 2, умноженной на 1.

Симплекс таблица примет вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательный элемент (-11), следовательно в базис входит вектор x 2 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при . Все следовательно целевая функция неограничена сверху. Т.е. задача линейного программирования неразрешима.

Примеры решения ЗЛП методом искусственного базиса

Пример 1. Найти максимум функции

Р е ш е н и е. Так как количество базисных векторов должен быть 3, то добавляем искусственное переменное, а в целевую функцию добавляем это переменное, умноженное на −M, где M, очень большое число:


Матрица коэффициентов системы уравнений имеет вид:

Базисные векторы следовательно, все элементы в столбцах ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца кроме ведущего элемента. Для этого сложим строку 5 со строкой 3, умноженной на -1.

Симплекс таблица примет вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-5), следовательно в базис входит вектор Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 3. Из базиса выходит вектор Сделаем исключение Гаусса для столбца учитывая, что ведущий элемент соответствует строке 3. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строку 5 со строкой 3, умноженной на 1. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-3), следовательно в базис входит вектор Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 1. Из базиса выходит вектор x 2 . Сделаем исключение Гаусса для столбца x 1 , учитывая, что ведущий элемент соответствует строке 1. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 2, 3, 4 со строкой 1, умноженной на 3/2, -1/10, 3/2, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-13/2), следовательно в базис входит вектор x 3 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 3. Из базиса выходит вектор x 5 . Сделаем исключение Гаусса для столбца x 3 , учитывая, что ведущий элемент соответствует строке 3. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 1, 2, 4 со строкой 3, умноженной на 5/3, 25/9, 65/9, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Текущий опорный план является оптимальным, так как в строках 4−5 под переменными нет отрицательных элементов.

Решение исходной задачи можно записать так:

Пример 2. Найти оптимальный план задачи линейного программирования:

Матрица коэффициентов системы уравнений имеет вид:

Базисные векторы x 4 , x 5 , x 6 , следовательно, все элементы в столбцах x 4 , x 5 , x 6 , ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца x 4 , кроме ведущего элемента. Для этого сложим строку 4 со строкой 1, умноженной на -1. Обнулим все элементы столбца x 5 , кроме ведущего элемента. Для этого сложим строку 5 со строкой 2, умноженной на -1. Обнулим все элементы столбца x 6 , кроме ведущего элемента. Для этого сложим строку 5 со строкой 3, умноженной на -1.

Симплекс таблица примет вид:

В строке 5 элементы, соответствующие переменным x 1 , x 2 , x 3 , x 4 , x 5 , x 6 неотрицательны, а число находящийся в пересечении данной строки и столбца x 0 отрицательнo. Тогда исходная задача не имеет опорного плана. Следовательно она неразрешима.

Решение задачи линейного программирования симплекс-методом начинается с нахождения какого-либо опорного плана.

Рассмотрим третий случай построения начального опорного плана (первый и второй описаны в пункте 2.1).

Пусть система ограничений имеет вид

Перейдем к каноническому виду путем введения дополнительных переменных
, которые вычитаем из левых частей неравенств системы. Получим систему

.

Теперь система ограничений не имеет предпочтительного вида, так как дополнительные переменные x n + i входят в левую часть (приb i 0) с коэффициентами, равными –1. В этом случае вводится так называемыйискусственный базис путем перехода кМ-задаче.

К левым частям ограничений-равенств, не имеющих предпочтительного вида, добавляют искусственные переменные w i . В целевую функцию переменныеw i вводят с коэффициентомM в случае решения задачи на минимум и с коэффициентом –M – для задачи на максимум, гдеM – большое положительное число. Полученная задача называетсяМ-задачей , соответствующей исходной. Она всегда имеет предпочтительный вид.

Пусть исходная задача линейного программирования имеет вид

;

;

При этом ни одно из ограничений не имеет предпочтительной переменной. М-задача будет записываться следующим образом:

;

При этом знак “–” в функции (10) относится к задаче на максимум. Задача (10)–(12) имеет предпочтительный вид. Ее начальный опорный план имеет вид

.

Если некоторые из уравнений (8) имеют предпочтительный вид, то в них не следует вводить искусственные переменные.

Теорема 5. Если в оптимальном планех опт

М -задачи (10)–(12) все искусственные переменные
, то план
является оптимальным планом исходной задачи (7)–(9).

Теорема 6 (признак несовместности системы ограничений ) . Если в оптимальном планеМ -задачи хотя бы одна из искусственных переменных отлична от нуля, то система ограничений исходной задачи несовместна.

В случае М -задачи индексную строку симплексной таблицы разбиваем на две. В первой строке записываются свободные члены выражений
и
, а во второй – коэффициенты, содержащиеМ . Признак оптимальности проверяется сначала по второй строке. По ней же определяется переменная, подлежащая включению в базис. По мере исключения из базиса искусственных переменных соответствующие им столбцы элементов можно опускать. Объясняется это тем, что искусственные переменные в базис не возвращают, а поэтому отвечающие им столбцы больше не потребуются. После исключения из базиса всех искусственных переменных процесс отыскания оптимального плана продолжают с использованием первой строки целевой функции.

Пример 4. Решить с использованием искусственного базиса задачу линейного программирования

Первое ограничение имеет предпочтительную переменную х 3 , а второе – нет. Поэтому вводим в него искусственную переменнуюw 1 . Приходим кМ- задаче

Занесем условие М- задачи в симплексную табл. 5. Начальный опорный план имеет видx 0 = (x 1 ;x 2 ;x 3 ;x 4 ;w 1) = (0; 0; 2; 0; 12),z (x 0) = 0 – 12M .

Таблица 5

с Б

z j c j

Сделаем необходимые пояснения.

Индексную строку удобно разбить на две. В первой из них записываются свободные члены выражений  0 =c Б А 0 и j =c Б A j c j , а во второй – коэффициенты, содержащиеM . Например, для табл. 5:

Признак оптимальности проверяем сначала по второй строке индексной строки. Так как в ней существуют отрицательные оценки, то план x 0 не является оптимальным.

Переходим к новой табл. 6.

Разрешающий столбец находим по max{|–3M |; |–4M |} = 4M , разрешающая строка определяется по
. Следовательно, 1 – разрешающий элемент.

Таблица 6

с Б

z j c j

В индексной строке нет отрицательных оценок. Следовательно, по признаку оптимальности опорный план (0; 2; 0; 0; 4) оптимален. Но так как в оптимальном плане искусственная переменная w 1 не равна 0, то по теореме 6 система ограничений исходной задачи несовместна. Задача решения не имеет.

Ответ: нет решения.

Пример 5. Решить с использованием искусственного базиса задачу

Упорядочим запись исходной задачи. Умножим второе неравенство на –1:

Сведем задачу к каноническому виду. Получим

Первое и четвертое ограничения имеют предпочтительные переменные, а второе и третье – нет. Поэтому вводим в них искусственные переменные w 1 иw 2 . Приходим кМ- задаче

Занесем условие М- задачи в симплексную табл. 7. Начальный опорный план имеет видx 0 = (0; 0; 10; 0; 0; 4; 3; 9),z (x 0) = 0 + 12M .

Таблица 7

с Б

z j c j

Мы решаем задачу на минимум. Признак оптимальности проверяем сначала по второй строке индексной строки. Так как в ней существует положительная оценка, то план x 0 не является оптимальным. Переходим к новой табл. 8.

Таблица 8

с Б


Метод искусственного базиса (Симплекс-метод) - Пример 1

Целевая функция:

1X 1 +5X 2 +4X 3 -3X 4 →max

2X 1 +7X 2 +1X 3 +0X 4 ≤5
1X 1 +4X 2 +2X 3 +8X 4 =6
-1X 1 +0X 2 +2X 3 +5X 4 =9

Приведем систему ограничений к каноническому виду, для этого необходимо неравенства преобразовать в равенства, с добавлением дополнительных переменных. Если в преобразуемом неравенстве стоит знак ≥, то при переходе к равенству знаки всех его коэффициентов и свободных членов меняются на противоположные. Тогда система запишется в виде:


2X 1 +7X 2 +1X 3 +0X 4 +X5=5
1X 1 +4X 2 +2X 3 +8X 4 +R1=6
-1X 1 +0X 2 +2X 3 +5X 4 +R2=9
Переходим к формированию исходной симплекс таблицы. В строку F таблицы заносятся коэффициенты целевой функции. Так как нам необходимо найти максимум целевой функции, то в таблицу заносятся коэффициенты с противоположным знаком

Так как среди исходного набора условий были равенства, мы ввели искуственные переменные R. Это значит, что в симплекс таблицу нам необходимо добавить дополнительную строку M, элементы которой расчитываются как сумма соответствующих элементов условий-равенств (тех которые после приведения к каноническому виду содержат искусственные переменные R) взятая с противоположным знаком.


Из данных задачи составляем исходную симплекс таблицу.
X1 X2 X3 X4 Своб член
F -1 -5 -4 3 0
X5 2 7 1 0 5
R1 1 4 2 8 6
R2 -1 0 2 5 9
M 0 -4 -4 -13 -15

Так как в столбце свободных членов нет отрицательных элементов, то найдено допустимое решение.В строке M имеются отрицательные элементы, это означает что полученое решение не оптимально. Определим ведущий столбец. Для этого найдем в строке M максимальный по модулю отрицательный элемент - это -13 Ведущей строкой будет та для которой отношение свободного члена к соответствующему элементу ведущего столбца минимально. Ведущей строкой является R1, а ведущий элемент: 8.

X1 X2 X3 Своб член
F -1.375 -6.5 -4.75 -2.25
X5 2 7 1 5
X4 0.125 0.5 0.25 0.75
R2 -1.625 -2.5 0.75 5.25
M 1.625 2.5 -0.75 -5.25

В строке M имеются отрицательные элементы, это означает что полученое решение не оптимально. Определим ведущий столбец. Для этого найдем в строке M максимальный по модулю отрицательный элемент - это -0.75 Ведущей строкой будет та для которой отношение свободного члена к соответствующему элементу ведущего столбца минимально. Ведущей строкой является X4, а ведущий элемент: 0.25.
X1 X2 X4 Своб член
F 1 3 19 12
X5 1.5 5 -4 2
X3 0.5 2 4 3
R2 -2 -4 -3 3
M 2 4 3 -3

В столбце свободных членов и в строке F нет отрицательных элементов. Выполнение алгоритма на этом завершено, однако не все искусственные переменные (R) были исключены из базиса (условия исходной задачи не совместны).

Алгоритм метода искусственного базиса имеет следующие особенности:

1. Ввиду того, что начальное опорное решение расширенной задачи содержит искусственные переменные, входящие в целевую функцию с коэффициентом —М (в задаче на максимум) или +М (в задаче на минимум), оценки разложений векторов условий состоят из двух слагаемых и , одно из которых не зависит от М , а другое зависит от М . Так как М скольугодно велико по сравнению с единицей (М>> 1), то на первом этапе расчета для нахождения векторов, вводимых в базис, используются только слагаемые оценок .

2. Векторы, соответствующие искусственным переменным, которые выводятся из базиса опорного решения, исключаются из рассмотрения.

3. После того, как все векторы, соответствующие искусственным переменным, исключаются из базиса, расчет продолжается обычным симплексным методом с использованием оценок , не зависящих от М.

4. Переход от решения расширенной задачи к решению исходной задачи производится с использованием доказанных выше теорем 4.1-4.3.

Пример 4.4. Решить задачу линейного программирования методом искусственного базиса

.

Решение . Составляем расширенную задачу. В левые части уравнений системы ограничений вводим неотрицательные искусственные переменные с коэффициентом (всегда) +1. Удобно справа от уравнений записать вводимые искусственные переменные. В первое уравнение вводим , во второе — . Данная задача — задача на нахождение максимума, поэтому и в целевую функцию вводятся с коэффициентом — М . Получаем

Задача имеет начальное опорное решение с единичным базисом .

Вычисляем оценки векторов условий по базису опорного решения и значение целевой функции на опорном решении.



.
.

Записываем исходные данные в симплексную таблицу (табл. 4.6).



Т а б л и ц а 4.6

При этом оценки и для удобства вычислений записываем в две строки: в первую — слагаемые , не зависящие от М , во вторую — слагаемые , зависящие от М . Значения удобно указывать без М , имея в виду однако, что оно там присутствует.

Начальное опорное решение не является оптимальным, так как в задаче на максимум имеются отрицательные оценки. Выбираем номер вектора , вводимого в базис опорного решения, и номер вектора , выводимого из базиса. Для этого вычисляем приращения целевой функции при введении в базис каждого из векторов с отрицательной оценкой и находим максимум этого приращения. При этом слагаемыми оценок (без М ) пренебрегаем до тех пор, пока хотя бы одно слагаемое М ) не будет отлично от нуля. В связи с этим строка со слагаемыми оценок может отсутствовать в таблице до тех пор, пока присутствует строка . Находим при k = 3.

В третьем столбце " " за разрешающий элемент выбираем коэффициент 1 во второй строке и выполняем преобразование Жордана.

Вектор , выводимый из базиса, исключаем из рассмотрения (вычеркиваем). Получаем опорное решение с базисом (табл. 4.7). Решение не является оптимальным так как имеется отрицательная оценка = 1.

Т а б л и ц а 4.7

В столбце " " единственный положительный элемент принимаем за разрешающий и переходим к новому опорному решению с базисом (табл. 4.8).


Т а б л и ц а 4.8

Данное опорное решение является единственным оптимальным решением расширенной задачи, так как в задаче на максимум оценки для всех векторов, не входящих в базис, положительны. По теореме 4.1 исходная задача также имеет оптимальное решение, которое получается из оптимального решения расширенной задачи отбрасыванием нулевых искусственных переменных, т. е. Х * = (0,0,6,2).

Ответ : max Z (X ) = -10 при .

Пример 4.5. Решить методом искусственного базиса задачу линейного программирования со смешанными ограничениями

Решение . Приводим задачу линейного программирования к каноническому виду. Для этого вводим дополнительные переменные и в первое и третье ограничения соответственно. Получаем

.

Составляем расширенную задачу, для чего вводим искусственные переменные и во второе и третье уравнения соответственно. Получаем

Данная расширенная задача имеет начальное опорное решение

С единичным базисом , . Вычисляем оценки векторов условий по базису опорного решения и записываем в симплексную таблицу так же, как в предыдущем примере. Решение не является оптимальным, так как в задаче на минимум векторы и имеют положительные оценки . Улучшаем опорные решения. Каждому опорному решению соответствует своя таблица. Все таблицы можно записать друг под другом, объединив в единую таблицу (табл. 4.9).

Т а б л и ц а 4.9

Определяем, введение какого из векторов или в базис начального опорного решения приведет к большему уменьшению целевой функции. Находим при k = 2, т. е. лучше ввести в базис вектор . Получаем второе опорное решение с базисом . Целевая функция . Это решение также не является оптимальным, так как вектор имеет положительную оценку . Вводим вектор в базис, получаем третье опорное решение с базисом . Целевая функция . Это решение оптимальное, но не единственное, так как вектор , не входящий в базис, имеет нулевую оценку. Поэтому необходимо перейти к новому опорному решению, которое также будет оптимальным. Для этого требуется ввести в базис вектор .

Переходим к четвертому опорному (оптимальному) решению

С базисом , при этом . Оптимальные решения расширенной задачи , имеют нулевые искусственные переменные. Поэтому (по теореме 4.1) исходная задача также имеет два оптимальных решения и . Дополнительные переменные в оптимальном решении исходной задачи не записываем.

Ответ : при , , , .

Слово симплекс

Слово симплекс английскими буквами(транслитом) — simpleks

Слово симплекс состоит из 8 букв: е и к л м п с с

Значения слова симплекс. Что такое симплекс?

Симплекс

Симплекс (от лат. simplex - простой) (математический), простейший выпуклый многогранник данного числа измерений n. При n = 3 трёхмерный С. представляет собой произвольный, в том числе неправильный, тетраэдр.

БСЭ. - 1969-1978

Симплекс - выпуклый многоугольник в n-мерном пространстве с n+1 вершинами, не лежащими в одной гиперплоскости. С. выделены в отдельный класс потому, что в n-мерном пространстве n точек всегда лежат в одной гиперплоскости.

slovar-lopatnikov.ru

СИМПЛЕКС - выпуклый многоугольник в n-мерном пространстве с n+1 вершинами, не лежащими в одной гиперплоскости. С. выделены в отдельный класс потому, что в n-мерном пространстве n точек всегда лежат в одной гиперплоскости.

Лопатников. - 2003

Саб симплекс

Саб симплекс Способ применения и дозы: Внутрь, во время или после еды и, при необходимости, перед сном. Перед применением следует активно встряхнуть флакон.

Решение ЗЛП симплекс методом с искусственным базисом

Чтобы суспензия начала поступать из пипетки…

Саб симплексДействующее вещество ›› Симетикон* (Simethicone*) Латинское название Sab simplex АТХ:›› A02DA Ветрогонные препараты Фармакологическая группа…

Словарь медицинских препаратов. — 2005

САБ® СИМПЛЕКС (SAB® SIMPLEX) Суспензия для приема внутрь от белого до серо-белого цвета, слегка вязкая, с характерным фруктовым (ванильно-малиновым) запахом. 100 мл симетикон 6.919 г…

ШОКЕ СИМПЛЕКС

ШОКЕ СИМПЛЕКС — непустое компактное выпуклое множество Xв локально выпуклом пространстве E, обладающее следующим свойством: при вложении Ев качестве гиперплоскости в пространство проектирующий конус.

Шеффилд-Симплекс

«Шеффилд-Симплекс» (англ. Sheffield-Simplex) - лёгкий пулемётный бронеавтомобиль Вооружённых сил Российской империи. Разработан британской фирмой «Sheffield-Simplex» на базе шасси собственного легкового автомобиля…

ru.wikipedia.org

Нордитропин Симплекс

Нордитропин Симплекс Показания: Задержка роста у детей вследствие недостаточности гормона роста или хронической почечной недостаточности (в препубертатном возрасте), синдрома Шерешевского - Тернера…

НОРДИТРОПИН® СИМПЛЕКС® (NORDITROPIN SimpleXx) Раствор для п/к введения 1.5 мл (1 картридж) соматропин 10 мг 1.5 мл — картриджи (1) — упаковки ячейковые контурные (1) — пачки картонные.

Справочник лекарственных препаратов "Видаль"

СТАНДАРТНЫЙ СИМПЛЕКС

СТАНДАРТНЫЙ СИМПЛЕКС — 1) С. с.- симплекс размерности пв пространстве с вершинами в точках е i=(0,…, 1,…, 0), i=0,…, п(единица стоит на i-м месте), т. е.

Математическая энциклопедия. — 1977-1985

Двойственный симплекс-метод

Двойственный симплекс-метод можно применять при решении задачи линейного программирования, свободные члены системы уравнений которой могут быть любыми числами. В обычном симплексном алгоритме план всегда должен быть допустимым.

ru.wikipedia.org

Русский язык

Си́мпле́кс/.

Морфемно-орфографический словарь. - 2002

Поиск Лекций

Пример решения задачи методом искусственного базиса.

Найти минимум функции F=-2×1+3×2 — 6×3 — x4 при условиях

Решение. Запишем данную задачу в форме основной задачи: найти максимум функции F1=2×1 – 3×2 + 6×3 + x4 при условиях

В системе уравнений последней задачи рассмотрим векторы из коэффициентов при неизвестных:

А1 = А2 = А 3= А 4= А 5= А 6=

Среди векторов А1 ,…, А 6 только два единичных (А 4 и А 5). Поэтому в левую часть третьего уравнения системы ограничений добавим дополнительную неотрицательную переменную x 7 и рассмотрим расширенную задачу, состоящую в максимизации функции

F=2×1 – 3×2 + 6×3 + x4 – Mx7

при условиях

Расширенная задача имеет опорный план X=(0; 0; 0; 24; 22; 0; 10), определяемый системой трех единичных векторов: А 4 , А5 , А7 .

Таблица 1

i Базис Сσ А0 -3 M
А1 А2 А3 А4 А5 А6 P7
А4 -2
А5
А7 M -1 -1
m +1 -8
m +2 -10 -1 -2

Составляем таблицу (1) I итерации, содержащую пять строк. Для заполнения 4-й и 5-й строк находим F 0 и значения разностей zj – cj (j= ):

F 0 = 24–10M;

z1–c1 = 0–M ;

z2–c2 = 4+M ;

z3–c3 = –8–2M ;

z4–c4 =0+M ;

z5–c5 =0+M ;

z6–c6 = 0+M ;

z7–c7 =0+M ;

Значения F 0 и zj–cj состоят из двух слагаемых, одно из которых содержит M , а другое – нет.

Для удобства итерационного процесса число, состоящее при M , записываем в 5-й строке, а слагаемое, которое не содержит M ,– в 4-й строке.

В 5-й строке табл.1 в столбцах векторов Аj (j = ) имеется два отрицательных числа (-1 и -2). Наличие этих чисел говорит о том, что данный опорный план расширенной задачи не является оптимальным. Переходим к новому опорному плану расширенной задачи.

Метод искусственного базиса.

В базис вводим вектор А3 . Чтобы определить вектор, исключаемый из базиса, находим θ=min(22/4; 10/2)=10/2. Следовательно, вектор А7 исключаем из базиса. Этот вектор не имеет смысла вводить ни в один из последующих базисов, поэтому в дальнейшем столбец данного вектора не заполняется (табл. 2 и 3).

Составляем таблицу II итерации (табл. 2). Она содержит только четыре строки, так как искусственный вектор из базиса исключен.

Таблица2

i Базис Сσ А0 -3
А1 А2 А3 А4 А5 А6
А4 -1
А5 -1
А3 1/2 -1/2 -1/2
m +1 -4

Как видно из табл. 2, для исходной задачи опорным является план Х =(0;0;5;34;2).

Проверим его на оптимальность. Для этого рассмотрим элементы 4-й строки. В этой строке в столбце вектора А6 имеется отрицательное число (-4). Следовательно, данный опорный план не является оптимальным и может быть улучшен благодаря введению в базис вектора А6. Из базиса исключается вектор А5 . Составляем таблицу III итерации.

Таблица 3

В 4-й строке табл.3 среди чисел ∆j нет отрицательных. Это означает, что найденный новый опорный план исходной задачи Х *=(0; 0; 11/2; 35; 0; 1) является оптимальным. При этом плане значение линейной формы Fmax = 68.

Решение данной задачи можно проводить, используя одну таблицу, в которой последовательно записаны все итерации.

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Метод искусственного базиса (М-задача).

Для многих задач линейного програм­мирования, записанных в форме основной задачи и имеющих опорные планы, среди векторов P j не всегда есть m единичных.

Рассмотрим такую задачу:

Пусть требуется найти максимум функции

F = c 1 x 1 + c 2 x 2 + ……+ c n x n (1)

при условиях

……………………………………… (2)

где b i  0 (i =l, m), m <.>n и среди векторов P 1 , P 2 , …, P n нет m единичных.

Определение . Задача, состоящая в определении максимального значения функции

F = c 1 x 1 + c 2 x 2 + ……+ c n x n x n +1 - …- М x n + m (3)

при условиях

……………………………………… (4)

где M - некоторое достаточно большое положительное число, конкретное значение которого обычно не задается, называется расширенной задачей (М-задачей) по отношению к задаче (1) - (2).

Расширенная задача имеет опорный план

Х=(0; 0; ...; 0; b 1 ; b 2 ; ...;b m).

определяемых системой единичных векторов P n +1 ; Р п+2 , … Р п+т , образующих базис m-ro векторного пространства, который назы­вается искусственным. Сами векторы, так же как и переменные x n + i (i =l, m ), называются искусственными. Так как расширенная задача имеет опорный план, то ее решение может быть найдено симплексным методом.

Теорема Если в оптимальном плане X*=(x* 1 , x * 2 , ...; x * n , x * n +1 ; ...; x * n + m) расширенной задачи (3) - (4) значения ис­кусственных переменных x * n + i =0 (i =1, m ), то X*=(x* 1 , x * 2 , ...; x * n) является оптимальным планом задачи (1) - (2).

Таким образом, если в найденном оптимальном плане расши­ренной задачи, значения искусственных переменных равны ну­лю, то тем самым получен оптимальный план исходной задачи.

Значения индексной строки ∆ 0 , ∆ 1 , …, ∆ n состоят из двух частей, одна из кото­рых зависит от M, а другая - нет. Заполняют симплекс - таблицу, которая содер­жит на одну строку больше, чем обычная симплексная табли­ца. При этом в (m+2)-ю строку помещают коэффициенты при M, а в (m+1)-ю – слагаемые, не содержащие M. При переходе от одного опорного плана к другому в базис вводят вектор, соответствующий наибольшему по абсолютной величине отрицательному числу (m+2)-й строки. Искусствен­ный вектор, исключенный из базиса, в следующую симплекс-таблицу не записывают. Пересчет симплекс-таблиц при переходе от одного опорного плана к другому производят по общим правилам симплексного метода.

Итерационный процесс по (m+2) -и строке ведут до тех пор, пока:

    либо все искусственные векторы не будут исключены из базиса;

    либо не все искусственные векторы исключены, но (m+2)-я строка не содержит больше отрицательных элементов в индексах ∆ 1 , …, ∆ n .

В первом случае базис отвечает некоторому опорному пла­ну исходной задачи и определение ее оптимального плана про­должают по (m+1)-й строке.

Во втором случае, если значение ∆ 0 отрицательное, исходная задача не имеет решения; если же ∆ 0 =0, то найденный опорный план исходной задачи является вырожденным и базис содержит по крайней мере один из векторов искусственного базиса.

Этапы нахождения решения задачи (1) - (2)

методом искусственного базиса:

    Составляют расширенную задачу (3) - (4).

    Находят опорный план расширенной задачи.

    С помощью обычных вычислений симплекс-метода исклю­чают искусственные переменные из базиса. В результате либо на­ходят опорный план исходной задачи (1) - (2), либо уста­навливают ее неразрешимость.

    Используя найденный опорный план задачи (1) - (2), либо находят симплекс-методом оптимальный план исходной задачи, либо устанавливают ее неразрешимость.

Пример.

Найти минимум функции F = - 2x 1 + 3x 2 - 6x 3 - x 4

при ограничениях:

2x 1 +x 2 -2x 3 +x 4 =24

x 1 +2x 2 +4x 3 ≤22

x 1 -x 2 +2x 3 ≥10

x i ≥0, i =1,4

Решение.

Запишем данную задачу в форме основной задачи: найти максимум функции F = 2x 1 - 3x 2 + 6x 3 + x 4

при ограничениях:

2x 1 +x 2 -2x 3 +x 4 =24

x 1 +2x 2 +4x 3 +x 5 =22

x 1 -x 2 +2x 3 - x 6= 10

x i ≥0, i =1, 6

В системе уравнений последней задачи рассмотрим векторы из коэффициентов при неизвестных:

Среди векторов P 1 , Р 2 , … P 6 только два единичных (P 4 и P 5). Поэтому в левую часть третьего уравнения системы ограничений задачи добавим дополнительную неотрицательную переменную х 7 и рассмотрим расширенную задачу, состоящую в максимизации функции

F = 2x 1 - 3x 2 + 6x 3 + x 4 - Мх7

при ограничениях:

2x 1 +x 2 -2x 3 +x 4 =24

x 1 +2x 2 +4x 3 +x 5 =22

x 1 -x 2 +2x 3 - x 6 +x 7= 10

Расширенная задача имеет опорный план Х=(0; 0; 0; 24; 22; 0; 10), определяемый системой трех единичных векторов: P 4 , P 5 , Р 7 .

Понятие двойственной (соапряженной) задачи линейного программирования.

Правила построения двойственной задачи.

С каждой задачей линейного программирования (ЗЛП), которая называется двойственной задачей (или сопряженной) по отношению к исходной задаче, которая называется прямой.

Двойственная задача строится по отношению к прямой задаче, записанной в стандартной форме:

F=c 1 x 1 +c 2 x 2 +…+c n x n  max (3.6)

a 11 x 1 +a 12 x 2 +…+a 1n x n ≤ b 1 ,

a 21 x 1 +a 22 x 2 +…+a 2n x n ≤ b 2 ,

………………………………

a k1 x 1 +a k2 x 2 +…+a kn x n ≤ =b k , (3.7)

a k+1,1 x 1 +a k+1,2 x 2 +…+a k+1,n x n =b k+1 ,

………………………………

a m1 x 1 +a m2 x 2 +…+a mn x n =b m ,

x j ≥ 0, , l ≤ n (3.8)

Задача, состоящая в нахождении минимального значения функции

L = b 1 y 1 + b 2 y 2 + … + b m y m (3.9)

при условиях

a 11 y 1 + a 12 y 2 +…+ a m1 y m ≥ c 1

a 21 y 1 + a 22 y 2 +…+ a m2 y m ≥ c 2

………………………………

a 1 l y 1 + a 2 l y 2 +…+ a m l y m ≥ c l (3.10)

a l +1,1 y 1 + a l +1,2 y 2 +…+ a l +1,m y m = c l+1

………………………………

a m1 y 1 + a m2 y 2 +…+ a mn y m = c m

y i ≥ 0, , k ≤ m (3.11)

называется двойственной по отношению к задаче (3.6) – (3.8).

Правила построения двойственной задачи приведены в таблице:

Структурные характеристики ЗЛП

Задача линейного программирования

Двойственная

1. Целевая функция

Максимизация (max)

Минимизация (min)

2. Количество переменных

n переменных

Равно количеству ограничений прямой задачи (3.7), y i , т.е. m

3. Количество ограничений

m ограничений

Равно количеству переменных прямой задачи x j , , т.е n

4. Матрица коэффициентов в системе ограничений

5. Коэффициенты при переменных в целевой функции

c 1 ,c 2, …,c n

b 1 ,b 2, …,b m

6. Правая часть системы ограничений

b 1 ,b 2, …,b m

c 1 ,c 2, …,c n

7. Знаки в системе ограничений

а) x j ≥ 0- условие неотрицательности

j-е ограничение имеет знак «≥»

б) на переменную x j не наложено условие неотрицательности

j-е ограничение имеет знак «=»

в) i-е ограничение имеет знак «≤»

переменная y i ≥0

г) i-е ограничение имеет знак «=»

на переменную y i не наложено условие неотрицательности

Примечание

    Прямая задача на максимум и двойственная на минимум являются взаимодвойственными задачами. Поэтому можно считать задачу (3.9) – (3.11) прямой ЗЛП, а задачу (3.6) – (3.8) – двойственной к ней задачей. При этом правила построения двойственной ЗЛП сохраняются, лишь с тем изменением, что исходной считается задача на минимум.

    Если исходная задача решается на max (min), а в системе ограничений) i -е (j -е) ограничение имеет знак «≤» («≥»), то для построения двойственной задачи необходимо:

а) либо домножить обе части i -го (j -го) неравенства на (-1) и поменять знак на «≤» («≥»)

б) либо привести i -е (j -е) ограничение к равенству путем введения дополнительной переменной x n+ i ≥0