На итерации s двойственного симплекс метода. Линейное программирование. Симплекс-метод

Двойственный симплекс-метод

Двойственный симплекс-метод, как и симплекс-метод, используется при нахождении решения задачи линейного программирования, записанной в форме основной задачи, для которой среди векторов Pi , составленных из коэффициентов при неизвестных в системе уравнений, имеется m единичных. Вместе с тем двойственный симплекс-метод можно применять при решении задачи линейного программирования, свободные члены системы уравнений которой могут быть любыми числами (при решении задачи симплексным методом эти числа предполагались неотрицательными). Такую задачу и рассмотрим теперь, предварительно предположив, что единичными являются векторы т. е. рассмотрим задачу, состоящую в определении максимального значения функции

при условиях

и среди чисел имеются отрицательные.

В данном случае есть решение системы линейных уравнений (55). Однако это решение не является планом задачи (54) - (56), так как среди его компонент имеются отрицательные числа.

Поскольку векторы - единичные, каждый из векторов можно представить в виде линейной комбинации данных векторов, причем коэффициентами разложения векторов по векторам служат числа

Таким образом, можно найти:

На основе исходных данных составляют симплекс-таблицу, в которой некоторые элементы столбца вектора являются отрицательными числами. Если таких чисел нет, то в симплекс-таблице записан оптимальный план задачи (54) - (56), поскольку, по предположению, все. Поэтому для определения оптимального плана задачи при условии, что он существует, следует произвести упорядоченный переход от одной симплекс-таблицы к другой до тех пор, пока из столбца вектора P0 не будут исключены отрицательные элементы. При этом все время должны оставаться неотрицательными все элементы (т +1)-й строки, т.е. для любого

Таким образом, после составления симплекс-таблицы проверяют, имеются ли в столбце вектора Po отрицательные числа. Если их нет, то найден оптимальный план исходной задачи. Если же они имеются (что мы и предполагаем), то выбирают наибольшее по абсолютной величине отрицательное число. В том случае, когда таких чисел несколько, берут какое-нибудь одно из них: пусть это число b l . Выбор этого числа определяет вектор, исключаемый из базиса, т. е. в данном случае из базиса выводится вектор P l . Чтобы определить, какой вектор следует ввести в базис, находим

Пусть это минимальное значение принимается при j=r, тогда в базис вводят вектор Р r . Число является разрешающим элементов. Переход к новой симплекс-таблице производят по обычным правилам симплексного метода. Итерационный процесс продолжают до тех пор, пока в столбце вектора Р 0 не будет больше отрицательных чисел. При этом находят оптимальный план исходной задачи, а следовательно, и двойственной. Если на некотором шаге окажется, что в i -й строке симплекс-таблицы в столбце вектора Р 0 стоит отрицательное число b i , а среди остальных элементов этой строки нет отрицательных, то исходная задача не имеет решения.

Таким образом, отыскание решения задачи двойственным симплекс-методом включает следующие этапы:

  • 1. Находят псевдоплан задачи.
  • 2. Проверяют этот псевдоплан на оптимальность. Если псевдоплан оптимален, то найдено решение задачи. В противном случае либо устанавливают неразрешимость задачи, либо переходят к новому псевдоплану.
  • 3. Выбирают разрешающую строку с помощью определения наибольшего по абсолютной величине отрицательного числа столбца вектора Р 0 и разрешающий столбец с помощью нахождения наименьшего по абсолютной величине отношения элементов (m +1)-и строки к соответствующим отрицательным элементам разрешающей строки.
  • 4. Находят новый псевдоплан и повторяют все действия начиная с этапа 2.

Найти максимальное значение функции

при условиях :

Решение . Запишем исходную задачу линейного программирования в форме основной задачи: найти максимум функции при условиях

Составим для последней задачи двойственную задачу. Такой является задача, в результате решения которой требуется найти минимальное значение функции

Строим симплекс таблицу:

Итерация 0:

Условие допустимости выполняется, так как в графе «Решение» все значения положительные, но не выполняется условие оптимальности, так как -строка содержит отрицательный коэффициент.Продолжаем наши действия

Итерация 1:

Двойственный симплексный метод основан на теории двойственности (см. решение двойственной задачи) и используется для решения задач линейного программирования, свободные члены которых b i могут принимать любые значения, а система ограничений задана неравенствами смысла «≤», «≥» или равенством «=».

Назначение сервиса . Онлайн-калькулятор используется для решения задач линейного программирования P-методом в следующих формах записи: базовой форме записи симплекс-метода, в виде симплексной таблицы, модифицированным симплекс-методом.

Инструкция для решения задач двойственным симплекс-методом . Выберите количество переменных и количество строк (количество ограничений), нажмите Далее. Полученное решение сохраняется в файле Word (см. пример решения двойственным симплекс-методом).

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 2 3 4 5 6 7 8 9 10
При этом ограничения типа x i ≥ 0 не учитывайте.

Вместе с этим калькулятором также используют следующие:
Графический метод решения ЗЛП
Решение транспортной задачи
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Экстремум функции двух переменных

Задачи динамического программирования
Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.

Объем товара Х (в партиях) Доход G(X)
1 2 3
0 0 0 0
1 28 30 32
2 41 42 45
3 50 55 48
4 62 64 60
5 76 76 72

В P-методе оптимальный план получается в результате движения по псевдопланам. Псевдоплан - план, в котором условия оптимальности удовлетворяются, а среди значений базисных переменных x i имеются отрицательные числа. Алгоритм двойственного симплекс-метода включает следующие этапы:

  1. Составление псевдоплана . Систему ограничений исходной задачи приводят к системе неравенств смысла «≤».
  2. Проверка плана на оптимальность . Если в полученном опорном плане не выполняется условие оптимальности, то задача решается симплексным методом .
  3. Выбор ведущих строки и столбца . Среди отрицательных значений базисных переменных выбираются наибольшие по абсолютной величине. Строка, соответствующая этому значению, является ведущей.
  4. Расчет нового опорного плана . Новый план получается в результате пересчета симплексной таблицы методом Жордана-Гаусса . Далее переход к этапу 2.
Более подробный алгоритм двойственного симплекс-метода . Особенности двойственного симплекс-метода Используются при решении методом Гомори .

Пример . Предприятию необходимо выпустить по плану продукции А1 единиц, А2 единиц, А3 единиц. Каждый вид изделия может производиться на двух машинах.
Как распределить работу машин, чтобы общие затраты времени на выполнение плана были минимальны? Дана матрица затрат и ресурс времени каждой машины. Записать модель исследуемой операции в форме, допускающей использование P–метода.

Известно, что содержание n питательных веществ A, B и С в рационе должно быть не менее m1, m2, m3 единиц соответственно. Указанные питательные вещества содержат три вида продуктов. Содержание единиц питательных веществ в одном килограмме каждого из видов продукта приведено в таблице. определите дневной рацион, обеспечивающий получение необходимого количества питательных веществ при минимальных денежных затратах.

Задание : Решить задачу, используя алгоритм двойственного симплекс-метода.
Приведем систему ограничений к системе неравенств смысла ≤, умножив соответствующие строки на (-1).
Определим минимальное значение целевой функции F(X) = 4x 1 + 2x 2 + x 3 при следующих условиях-ограничений.
- x 1 - x 2 ≤-10
2x 1 + x 2 - x 3 ≤8
Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (переход к канонической форме).
В первом неравенстве смысла (≤) вводим базисную переменную x 4 . Во втором неравенстве смысла (≤) вводим базисную переменную x 5 .
-1x 1 -1x 2 + 0x 3 + 1x 4 + 0x 5 = -10
2x 1 + 1x 2 -1x 3 + 0x 4 + 1x 5 = 8
Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:

A =
-1 -1 0 1 0
2 1 -1 0 1
Решим систему уравнений относительно базисных переменных:
x 4 , x 5 ,
Полагая, что свободные переменные равны нулю, получим первый опорный план:
X1 = (0,0,0,-10,8)
Базис B x 1 x 2 x 3 x 4 x 5
x 4 -10 -1 -1 0 1 0
x 5 8 2 1 -1 0 1
F(X0) 0 -4 -2 -1 0 0

Итерация №1

План 0 в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.


Ведущей будет первая строка, а переменную x 4 следует вывести из базиса.
3. Определение новой базисной переменной. Минимальное значение θ соответствует 2-му столбцу, т.е. переменную x 2 необходимо ввести в базис.

Базис B x 1 x 2 x 3 x 4 x 5
x 4 -10 -1 -1 0 1 0
x 5 8 2 1 -1 0 1
F(X0) 0 -4 -2 -1 0 0
θ 0 -4: (-1) = 4 -2: (-1) = 2 - - -

4. Пересчет симплекс-таблицы. Выполняем преобразования симплексной таблицы методом Жордано-Гаусса .
Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 5 -2 1 0 -1 1 1
F(X0) 20 -2 0 -1 -2 0

Представим расчет каждого элемента в виде таблицы:
B x 1 x 2 x 3 x 4 x 5
-10: -1 -1: -1 -1: -1 0: -1 1: -1 0: -1
8-(-10 1):-1 2-(-1 1):-1 1-(-1 1):-1 -1-(0 1):-1 0-(1 1):-1 1-(0 1):-1
0-(-10 -2):-1 -4-(-1 -2):-1 -2-(-1 -2):-1 -1-(0 -2):-1 0-(1 -2):-1 0-(0 -2):-1

Итерация №2
1. Проверка критерия оптимальности.
План 1 в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.
2. Определение новой свободной переменной.
Среди отрицательных значений базисных переменных выбираем наибольший по модулю.
Ведущей будет вторая строка, а переменную x 5 следует вывести из базиса.
3. Определение новой базисной переменной. Минимальное значение θ соответствует третьему столбцу, т.е. переменную x 3 необходимо ввести в базис.
На пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный (-1).

Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 5 -2 1 0 -1 1 1
F(X0) 20 -2 0 -1 -2 0
θ 0 - - -1: (-1) = 1 - -

4. Пересчет симплекс-таблицы. Выполняем преобразования.
Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 3 2 -1 0 1 -1 -1
F(X1) 22 -3 0 0 -3 -1
Или более подробно:
B x 1 x 2 x 3 x 4 x 5
10-(-2 0):-1 1-(1 0):-1 1-(0 0):-1 0-(-1 0):-1 -1-(1 0):-1 0-(1 0):-1
-2: -1 1: -1 0: -1 -1: -1 1: -1 1: -1
20-(-2 -1):-1 -2-(1 -1):-1 0-(0 -1):-1 -1-(-1 -1):-1 -2-(1 -1):-1 0-(1 -1):-1

В базисном столбце все элементы положительные. Переходим к основному алгоритму симплекс-метода.

Итерация №3
1. Проверка критерия оптимальности.
Среди значений индексной строки нет положительных. Поэтому эта таблица определяет оптимальный план задачи.

Базис B x 1 x 2 x 3 x 4 x 5
x 2 10 1 1 0 -1 0
x 3 2 -1 0 1 -1 -1
F(X1) 22 -3 0 0 -3 -1

Оптимальный план можно записать так: x 1 = 0, x 2 = 10, x 3 = 2
F(X) = 2 10 + 1 2 = 22

Заключается в построении оптимального недопустимого плана с последующим преобразованием его в допустимый, не нарушая оптимальности.

Алгоритм двойственного симплекс-метода

1) выбирают разрешающую строку по наибольшему по абсолютной величине отрицательному элементу столбца свободных членов;
2) выбирают разрешающий столбец по наименьшему по абсолютной величине отношению элементов L строки к отрицательным элементам разрешающей строки;
3) пересчитывают симплексную таблицу по правилам обычного симплекс-метода;
4) решение проверяют на оптимальность. Признаком получения допустимого оптимального решения является отсутствие в столбце свободных членов отрицательных элементов.
Замечания
1. Если в разрешающей строке нет ни одного отрицательного элемента, задача неразрешима.
2. Если ограничения задачи заданы неравенствами типа «≥», двойственный симплекс-метод позволяет избавиться от необходимости введения искусственных переменных.

Пример . Решить задачу, используя алгоритм двойственного симплекс-метода

L = x 1 + 4x 2 → min

Составляем исходную симплексную таблицу.

Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 4 -2 -3 1 0 0 0 -20
x 5 -5 1 -2 0 1 0 0 -12
x 6 1 2 -1 0 0 1 0 2
x 7 -1 4 -2 0 0 0 1 1
L -1 -4 -1 0 0 0 0 0

Отсутствие в L строке положительных оценок свидетельствует об оптимальности исходного решения, а наличие в столбце свободных членов отрицательных элементов – о его недопустимости. Согласно алгоритму двойственного симплекс-метода выбираем разрешающую строку по наибольшему по абсолютной величине отрицательному элементу столбца свободных элементов. В нашем примере разрешающая строка – первая. Разрешающий столбец выбирается в соответствии с правилом, изложенным в пункте 2 схемы алгоритма. Разрешающий элемент равен (-4). После пересчета получаем следующую таблицу

Баз. х 1 х 2 х 3 х 4 х 5 х 6 х 7 Св.
х 3 1 0 0 0 5
х 5 0 1 0 0 -2
х 6 0 0 1 0 7
х 7 0 0 0 0 1 11
L 0 0 0 0 5

Аналогично рассуждая, получим еще одну таблицу

Баз. х 1 х 2 х 3 х 4 х 5 х 6 х 7 Св.
х 3 0 1 0 0
х 1 1 0 0 0
х 6 0 0 1 0
х 7 0 0 0 0 1 11
L 0 0 0 0

Отсутствие в столбце свободных членов отрицательных элементов свидетельствует о том, что получено оптимальное решение , .
Замечание . Если решение ЗЛП и недопустимо и неоптимально, то сначала получаем допустимое решение, используя алгоритм двойственного симплекс-метода, а затем по правилам обычного симплекс-метода получаем оптимальное решение.
Пример .
L = 5x 1 – x 2 – x 3 → max
или

Составляем исходную симплекс-таблицу

x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 4 0 -2 1 0 0 0 -9
x 5 1 -1 0 0 1 0 0 -1
x 6 -1 -1 3 0 0 1 0 -8
x 7 1 0 -1 0 0 0 1 4
L -5 1 4 0 0 0 0 0

Решение недопустимо, так как в столбце свободных членов есть отрицательные элементы и неоптимально, так как в строке L есть отрицательная оценка (-5). Получаем сначала допустимое решение, используя алгоритм двойственного симплекс-метода. После пересчета получаем следующую симплексную таблицу

Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 2 0 1 2 -1 0 0 0 9
x 5 1 0 2 -1 1 0 0 8
x 6 -1 0 5 -1 0 1 0 1
x 7 0 -1 0 0 0 1 4
L -5 0 2 1 0 0 0 -9

В столбце свободных членов нет отрицательных элементов, но в строке L есть отрицательная оценка (-5), значит решение допустимо, неоптимально.
Используем обычный симплекс-метод и получаем следующие таблицы

Баз. x 1 x 2 x 3 x 4 x 5 x 6 x 7 Св.
x 2 0 1 2 -1 0 0 0 9
х 5 0 0 3 -1 1 0 -1 4
х 6 0 0 -1 0 1 1 5
x 1 1 0 -1 0 0 0 1 4
L 0 0 -3 1 0 0 5 11

Рассмотрим симплекс -метод для решения задач линейного программирования (ЛП). Он основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает.

Алгоритм симплекс-метода следующий:

  1. Исходную задачу переводим в канонический вид путем введения дополнительных переменных. Для неравенства вида ≤ дополнительные переменные вводят со знаком (+ ), если же вида ≥ то со знаком (— ). В целевую функцию дополнительные переменные вводят с соответствующими знаками с коэффициентом, равным 0 , т.к. целевая функция не должна при этом менять свой экономический смысл.
  2. Выписываются вектора P i из коэффициентов при переменных и столбца свободных членов. Этим действием определяется количество единичных векторов. Правило – единичных векторов должно быть столько, сколько неравенств в системе ограничений.
  3. После этого исходные данные вводятся в симплекс-таблицу. В базис вносятся единичные вектора, и исключая их из базиса, находят оптимальное решение . Коэффициенты целевой функции записывают с противоположным знаком.
  4. Признак оптимальности для задачи ЛП – решение оптимально, если в f – строке все коэффициенты положительны. Правило нахождения разрешающего столбца – просматривается f – строка и среди ее отрицательных элементов выбирается наименьшее. Вектор P i его содержащий становится разрешающим. Правило выбора разрешающего элемента – составляются отношения положительных элементов разрешающего столбца к элементам вектора Р 0 и то число, которое дает наименьшее отношение становится разрешающим элементом, относительно которого будет произведен пересчет симплекс-таблицы. Строка, содержащая этот элемент называется разрешающей строкой. Если в разрешающем столбце нет положительных элементов, то задача не имеет решения. После определения разрешающего элемента переходят к пересчету новой симплекс – таблицы.
  5. Правила заполнения новой симплекс – таблицы. На месте разрешающего элемента проставляют единицу, а другие элементы полагают равными 0 . Разрешающий вектор вносят в базис, из которого исключают соответствующий нулевой вектор, а остальные базисные вектора записывают без изменений. Элементы разрешающей строки делят на разрешающий элемент, а остальные элементы пересчитывают по правилу прямоугольников.
  6. Так поступают до тех пор, пока в f – строке все элементы не станут положительными.

Рассмотрим решение задачи с использованием рассмотренного выше алгоритма.
Дано:

Приводим задачу к каноническому виду:

Составляем вектора:

Заполняем симплекс – таблицу:

:
Пересчитаем первый элемент вектора Р 0 , для чего составляем прямоугольник из чисел: и получаем: .

Аналогичные расчеты выполним для всех остальных элементов симплекс – таблицы:

В полученном плане f – строка содержит один отрицательный элемент – (-5/3), вектора P 1 . Он содержит в своем столбце единственный положительный элемент, который и будет разрешающим элементом. Сделаем пересчет таблицы относительно этого элемента:

Отсутствие отрицательных элементов в f – строке означает, что найден оптимальный план :
F* = 36/5, Х = (12/5, 14/5, 8, 0, 0).

  • Ашманов С. А. Линейное программирование, М: Наука, 1998г.,
  • Вентцель Е.С. Исследование операций, М: Советское радио, 2001г.,
  • Кузнецов Ю.Н., Кузубов В.И., Волошенко А.Б. Математическое программирование, М: Высшая школа, 1986г.

Решение линейного программирования на заказ

Заказать любые задания по этой дисциплине можно у нас на сайте. Прикрепить файлы и указать сроки можно на

Краткая теория

Для решения задач линейного программирования предложено немало различных методов. Однако наиболее эффективным и универсальным среди них оказался симплекс-метод. При этом следует отметить, что при решении некоторых задач могут оказаться более эффективными другие методы. Например, при ЗЛП с двумя переменными оптимальным является , а при решении - метод потенциалов. Симплекс-метод является основным и применимым к любой ЗПЛ в канонической форме.

В связи с основной теоремой линейного программирования естественно возникает мысль о следующем пути решения ЗЛП с любым числом переменных. Найти каким-нибудь способом все крайние точки многогранника планов (их не больше, чем ) и сравнить в них значения целевой функции. Такой путь решения даже с относительно небольшим числом переменных и ограничений практически неосуществим, так как процесс отыскания крайних точек сравним по трудности с решением исходной задачи, к тому же число крайних точек многогранника планов может оказаться весьма большим. В связи с этими трудностями возникла задача рационального перебора крайних точек.

Суть симплексного метода в следующем. Если известны какая-нибудь крайняя точка и значение в ней целевой функции, то все крайние точки, в которых целевая функция принимает худшее значение, заведомо не нужны. Отсюда естественно стремление найти способ перехода от данной крайней точки к смежной по ребру лучшей, от нее к еще лучшей (не худшей) и т. д. Для этого нужно иметь признак того, что лучших крайних точек, чем данная крайняя точка, вообще нет. В этом и состоит общая идея наиболее широко применяемого в настоящее время симплексного метода (метода последовательного улучшения плана) для решения ЗЛП. Итак, в алгебраических терминах симплексный метод предполагает:

  1. умение находить начальный опорный план;
  2. наличие признака оптимальности опорного плана;
  3. умение переходить к нехудшему опорному плану.

Пример решения задачи

Условие задачи

Для реализации трех групп товаров коммерческое предприятие располагает тремя видами ограниченных материально-денежных ресурсов в количестве , , , единиц. При этом для продажи 1 группы товаров на 1 тыс. руб. товарооборота расходуется ресурса первого вида в количестве единиц, ресурса второго вида в количестве единиц, ресурса третьего вида в количестве единиц. Для продажи 2 и 3 групп товаров на 1 тыс. руб. товарооборота расходуется соответственно ресурса первого вида в количестве , единиц, ресурсов второго вида в количестве , единиц, ресурсов третьего вида в количестве , единиц. Прибыль от продажи трех групп товаров на 1 тыс. руб. товарооборота составляет соответственно , , тыс. руб.

  • Определить плановый объем и структуру товарооборота так, чтобы прибыль торгового предприятия была максимальной.
  • К прямой задаче планирования товарооборота, решаемой симплексным методом, составить двойственную задачу линейного программирования.
  • Установить сопряженные пары переменных прямой и двойственной задач.
  • Согласно сопряженным парам переменных из решения прямой задачи получить решение двойственной задачи, в которой производится оценка ресурсов, затраченных на продажу товаров.

Если ваш допуск к сессии зависит от решения блока задач, а у вас нет ни времени, ни желания садиться за расчёты – используйте возможности сайта сайт. Заказ задач – дело нескольких минут. Подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Купить решение задач по линейному программированию...

Решение задачи

Построение модели

Через обозначим товарооборот 1-го, 2-го и третьего вида товаров соответственно.

Тогда целевая функция, выражающая получаемую прибыль:

Ограничения по материально-денежным ресурсам:

Кроме того, по смыслу задачи

Получаем следующую задачу линейного программирования:

Приведение к каноническому виду ЗЛП

Приведем задачу к каноническому виду. Для преобразования неравенств в равенства введем дополнительные переменные . Переменные входят в ограничения с коэффициентом 1. В целевую функцию все дополнительные переменные введем с коэффициентом, равным нулю.

Ограничение имеет предпочтительный вид, если при неотрицательности правой части левая часть имеет переменную, входящую с коэффициентом, равным единице, а остальные ограничения-равенства - с коэффициентом, равным нулю. В нашем случае 1-е, 2-е, 3-е ограничения имеют предпочтительный вид с соответствующими базисными переменными .

Решение симплекс-методом

Заполняем симплексную таблицу 0-й итерации.

БП Симплексные
отношения
8 6 4 0 0 0 0 520 16 18 9 1 0 0 65/2 0 140 7 7 2 0 1 0 20 0 810 9 2 1 0 0 1 90 0 -8 -6 -4 0 0 0

Так как мы решаем задачу на максимум – наличие в индексной строке отрицательных чисел при решении задачи на максимум свидетельствует о том, что нами оптимальное решение не получено и что от таблицы 0-й итерации необходимо перейти к следующей.

Переход к следующей итерации осуществляем следующим образом:

Ведущий столбец соответствует .

Ключевая строка определяется по минимуму соотношений свободных членов и членов ведущего столбца (симплексных отношений):

На пересечении ключевого столбца и ключевой строки находим разрешающий элемент, т.е.7.

Теперь приступаем к составлению 1-й итерации. Вместо единичного вектора вводим вектор .

В новой таблице на месте разрешающего элемента пишем 1, все остальные элементы ключевого столбца –нули. Элементы ключевой строки делятся на разрешающий элемент. Все остальные элементы таблицы вычисляются по правилу прямоугольника.

Получаем таблицу 1-й итерации:

БП Симплексные
отношения
8 6 4 0 0 0 0 200 0 2 31/7 1 -16/7 0 1400/31 8 20 1 1 2/7 0 1/7 0 70 0 630 0 -7 -11/7 0 -9/7 1 - 160 0 2 -12/7 0 8/7 0

Ключевой столбец для 1-й итерации соответствует .

Находим ключевую строку, для этого определяем:

На пересечении ключевого столбца и ключевой строки находим разрешающий элемент, т.е. 31/7.

Вектор выводим из базиса и вводим вектор .

Получаем таблицу 2-й итерации:

БП Симплексные
отношения
8 6 4 0 0 0 4 1400/31 0 14/31 1 7/31 -16/31 0 8 220/31 1 27/31 0 -2/31 9/31 0 0 21730/31 0 -195/31 0 11/31 -65/31 1 7360/31 0 86/31 0 12/31 8/31 0

В индексной строке все члены неотрицательные, поэтому получено следующее решение задачи линейного программирования (выписываем из столбца свободных членов):

Таким образом, необходимо продавать 7,1 тыс.р. товара 1-го вида и 45,2 тыс.р. товара 3-го вида. Товар 2-го вида продавать невыгодно. При этом прибыль будет максимальна и составит 237,4 тыс.р. При реализации оптимального плана остаток ресурса 3-го вида составит 701 ед.

Двойственная задача ЛП

Запишем модель двойственной задачи.

Для построения двойственной задачи необходимо пользоваться следующими правилами:

1) если прямая задача решается на максимум, то двойственная - на минимум, и наоборот;

2) в задаче на максимум ограничения-неравенства имеют смысл ≤, а в задаче минимизации - смысл ≥;

3) каждому ограничению прямой задачи соответствует переменная двойственной задачи, и наоборот, каждому ограничению двойственной задачи соответствует переменная прямой задачи;

4) матрица системы ограничений двойственной задачи получается из матрицы системы ограничений исходной задачи транспонированием;

5) свободные члены системы ограничений прямой задачи являются коэффициентами при соответствующих переменных целевой функции двойственной задачи, и наоборот;

6) если на переменную прямой задачи наложено условие неотрицательности, то соответствующее ограничение двойственной задачи записывается как ограничение-неравенство, если же нет, то как ограничение-равенство;

7) если какое-либо ограничение прямой задачи записано как равенство, то на соответствующую переменную двойственной задачи условие неотрицательности не налагается.

Транспонируем матрицу исходной задачи:

Приведем задачу к каноническому виду. Введем дополнительные переменные. В целевую функцию все дополнительные переменные введем с коэффициентом, равным нулю. Дополнительные переменные прибавим к левым частям ограничений, не имеющих предпочтительного вида, и получим равенства.

Решение двойственной задачи ЛП

Соответствие между переменными исходной и двойственной задачи:

На основании симплексной таблицы получено следующее решение двойственной задачи линейного программирования (выписываем из нижней строки):

Таким образом, наиболее дефицитным является ресурс первого вида. Его оценка максимальна и равна . Ресурс третьего вида является избыточным -его двойственная оценка равна нулю . Каждая дополнительно проданная единица товара 2-й группы будет снижать оптимальную прибыль на
Рассмотрен графический метод решения задачи линейного программирования (ЗЛП) с двумя переменными. На примере задачи приведено подробное описание построения чертежа и нахождения решения.

Решение транспортной задачи
Подробно рассмотрена транспортная задача, ее математическая модель и методы решения - нахождение опорного плана методом минимального элемента и поиск оптимального решения методом потенциалов.

Принятие решений в условиях неопределенности
Рассмотрено решение статистической матричной игры в условиях неопределенности с помощью критериев Вальда, Сэвиджа, Гурвица, Лапласа, Байеса. На примере задачи подробно показано построение платежной матрицы и матрицы рисков.